Estimating the agricultural fertilizer NH₃ emission in China based on the bi-directional flux parameterization for air quality models

Chenhong Zhou 5.15 2015

Outline

- Background
- Objective
- Method
- * Pre-work
- Results
- On-going work

Background

- Smog or haze has become the hottest topic to the publics and received a great concern from our governments, especially in PM_{2.5}.
- 2. Secondary non-organic aerosol (SNA) is major component of PM_{2.5} in haze days(He et al., 2012),NH₃ plays an important role in SNA formation process. China is one of the largest countries for NH₃ emission, about 23% (2005, EDGARv4.1). The major contributors are fertilizer use and livestock.

Background

Figure 6 | Mass fraction of different chemical compositions in $PM_{2.5}$ in Beijing station. Non-haze, haze-day, and haze-night represent the sampling times of 12:00 on Jan. 9th, 12:00 on Jan. 12th, and 00:00 on Jan. 13th, 2013, respectively.

(source: He et al., Scientific Reports, 2010)

- Secondary non-organic aerosol (SNA) is major component of PM_{2.5} in haze days
- NH₃ plays an important role in SNA formation process

Background

 3. Limited attention has been given to the agricultural emissions and their impact on air quality. The current emission inventory of NH₃ for China is mainly based on fixed emission factors. Large uncertainty still exists for time and spatial distribution.

Challenge and objective

- Anthropogenic source is easy to control compared with the agricultural emission; High uncertainties associated with agricultural emission inventories have been identified as one of the major challenges in air quality studies.
- Our goal is to find a way to develop an updated and detailed agricultural emission inventory in China(Mainly in fertilizer use)

Application of bidirectional CMAQ in US

Like most dry deposition models, the bidirectional flux model is based on an electrical resistance analog. The total flux between the plant canopy and the overlying atmosphere is the sum of two bidirectional pathways, to the leaf stomata (Fst) and the soil (Fg), and one uni-directional deposition pathway, to the leaf cuticle (Fcut).

$$F_t = \frac{(\chi_c - \chi_a)}{R_a + 0.5^* R_{\rm inc}} = F_g + F_{\rm st} + F_{\rm cut},$$

and the component fluxes are

$$F_g = \frac{(\chi_g - \chi_c)}{0.5^* R_{\rm inc} + R_{\rm bg} + R_{\rm sof}}$$
$$F_{\rm st} = \frac{(\chi_s - \chi_c)}{R_b + R_{\rm st}}$$
$$F_{\rm cut} = \frac{\chi_c}{R_b + R_w}$$

deposition R. Aerodynamic resistance Laminar boundary R. laver resistance R_{inc} In-canopy aerodyn amic 0.5Rind resistance Rbg Ground laminar R_w χc bound ary layer resistance Rh 0.5R_{in} Rw Cuticular resistance Stom atal resistance Rat R_{b} Atm ospheric χ_a R_{bg} concentration χe Canopy compensation point R_{soil} Soil compensation Χz Ret point concentration Stom atal Xz compensation point concentration R_{soil} Soil resistance

Resistance to

Source : Jonathan E. Pleim, 2013

Method: Structure of the system for China

Source: FEST-C UNC-chapel hill

Three main parts of the system

• Landcover and crop categories

• Soil

• Crop management

BLED4

 FORM-LC(250m) China
MODIS (500m) Other regions

Landuse

BLED4

• Grid crop data

BELD4	BELD3	Crop Name	BELD4	BELD3	Crop Name	BELD4	BELD3	Crop Name
1	22	Hay	15	36	Cotton	29	50	SorghumSilage
2	23	Hay_ir	16	37	Cotton_ir	30	51	SorghumSilage_ir
3	24	Alfalfa	17	38	Oats	31	52	Soybeans
4	25	Alfalfa_ir	18	39	Oats_ir	32	53	Soybeans_ir
5	26	Other_Grass	19	40	Peanuts	33	54	Wheat_Spring
6	27	Other_Grass_ir	20	41	Peanuts_ir	34	55	Wheat_Spring_ir
7	28	Barley	21	42	Potatoes	35	56	Wheat_Winter
8	29	Barley_ir	22	43	Potatoes_ir	36	57	Wheat_Winter_ir
9	30	BeansEdible	23	44	Rice	37	58	Other_Crop
10	31	BeansEdible_ir	24	45	Rice_ir	38	59	Other_Crop_ir
11	32	ComGrain	25	46	Rye	39	60	Canola
12	33	ComGrain_ir	26	47	Rye_ir	40	61	Canola_ir
13	34	ComSilage	27	48	SorghumGrain	41	62	Beans
14	35	CornSilage_ir	28	49	SorghumGrain_ir	42	63	Beans_ir

Table 1. The 42 rain-fed and irrigated crops modeled in the FEST-C system.

- > 15 crop categories: including early rice, middle rice, late rice, winter wheat, spring wheat, corn, sorghum, barley, soybean, potato, peanuts, canola, cotton and other crops, Pasture
- Each crop is divided into irrigated and non-irrigated classes, so we'll have 30 rain-fed and irrigated crops modeled in FEST-C system.

Soil map (main part)

- > HWSD soil data set will be used for China EPIC soil, but the data is a little rough. Resolution is 36km. The data is provided from the Institute of Soil Science, Chinese Academy of Sciences, China
- 1.There is only two soil layers from HWSD :- top layer (0-30cm);sub layer (30-100cm).
- 2. Lack essential elements like : soil albedo, Initial soil water content, fraction of field capacity, groundwater storage in mm ...

Generating Site Soil Data

HXSD-Viewer - JANUD Soll Groups Image: Sol And Sold Sold Sold Sold Sold Sold Sold Sol
Re Wer Date Window Help Image: Comparison of the
Image: Section

Variable	Units	China
Gravel Content	%vol.	\checkmark
Sand Fraction	% wt.	\checkmark
Silt Fraction	% wt.	\checkmark
Clay Fraction	% wt.	\checkmark
Texture Classification	name	\checkmark
Reference Bulk Density	kg/dm3	\checkmark
Bulk Density	kg/dm3	~
Organic Carbon	% weight	~
рН (Н20)	-log(H+)	~
CEC	Cmol/kg	~
Base Saturation	%	~

Soil input file for 36km each grid

Generating Grid Crop Data

line 1: (columns 1-n)

General description line for soil type.

from line 4 onward, one column of data per soil layer (up to 10 layers) (fields of 8 columns)

				line 4:	Z	=	Depth to bottom of layer (M)
line 2: (fields of 8 columns)			line 5:	BD	=	Bulk Density (T/M**3)	
				line 6:	UW	=	Soil water content at wilting point (1500 KPA) (M/M) (blank if unknown).
2	SALB	=	soil albedo.	line 7:	FC	=	Water content at field capacity (33 K.P.A) (M/IM) (blank if unknown).
3	HSG	_	soil by drologic group $(1=A, 2=B, 3=C, 4=D)$	line 8:	SAN	=	% sand.
4		_	Traitist soil motor sout out for this of field on a	line 9:	SIL UAN	_	70 SHL. Luiti di angeneria N. Changantanti an (C. T.). (bi anta if angles anno)
4	FFC	=	initial soil water content, iraction of field capa	Ente IU:		_	ninia organic N Concentration (G/1) (otank ir unknown).
5	WTMN	=	min depth to water table in m, (blank if unknow	ние 11: Бие 12:	SMB	_	am of BASES (CMOL/KG) (blank if unknown)
6	WTMX	=	max depth to water table in m, (blank if unkno	- Hine 12.	WOC	=	organic carbon concentration (%)
7	WTBL	=	initial water table height in m. (blank if unkno	bine 14:	CAC	=	Calcium carbonate content of soil (%). (blank if unknown)
8	GWST	=	groundwater storage in mm (blank if unknown	line 15:	CEC	=	Cation exchange capacity (cm ol/kg), (blank if unknown).
õ	GWMYY	_	maximum aroundwater storage in mm (blank i	line 16:	ROK	=	Coarse fragment content (% vol), (blank if unknown).
10		_	maximum ground water storage in min (orank i	line 17:	CNDS	=	Initial NO3 concentration (G/T), (blank if unknown).
10	RFIU	=	groundwater residence time in days, (blank if i	line 18:	PKRZ	=	Initial labile P concentration (1) (g/t), (blank if unknown).
11	RFPK	=	return flow/(return flow + deep percolation), ()	line 19:	RSD	=	Crop residue (t/ha), (blank if unknown).
				line 20:	BDD	=	Bulk density (oven dry) (t/m **3).
line	3: (fields of 8	colt	umns)	line 21:	PSP	=	<= 1 Phosphorus sorption ratio
			,		a . ma		> 1 Active & stable mineral P (kg/ha)
12	TOT A	_	movimum number of soil lowers often enlitting	line 22:	SAIC	=	Saturated conductivity (mm/h).
12	ALGI	_	maximum number of som layers after spinning	line 23:	HUL	_	Lateral hydraulic conductivity (mm/h), (blank if unknown).
		=	0 no splitting occurs initially.	nne 24: Eno 25:	FYCK	_	Fu de congenie F concentration (29), (otanich unichown).
13	XIDP	=	soil weathering code.	line 25:	FCND	_	Exchangeable A condemnation (gr)
		=	0 for calcareous and non-calcareous soils with	line 27 :	STER	=	Fraction of storage interacting with NO3 leaching (blank if unknown)
		=	1 for non CACO3 slightly weathered.	line 28:	ST	=	Initial soil water storage (fraction of field capacity)
		=	2 for non CACO3 moderately weathered	line 29:	CPRV	=	Fraction inflow partitioned to vertical crack or pipe flow (blank if
		_	2 for non CACO2 highly weathered				unknown).
		_	5 for non-CACOS nightly weathered.	line 30:	CPRH	=	Fraction inflow partitioned to horizontal crack or pipe flow (blank if
		=	4 input PSP or active + stable mineral P (kg/h	Li -			unknown).
14	RTN0	=	number of years of cultivation at start of simul	line 31:	WLS	=	Structural litter (kg/ha)
15	XIDK	=	1 for kaolinitic soil group.	line 32:	WLM	=	Metabolic litter (kg/ha)
		=	2 for mixed soil group.	line 33:	WLSL	=	Lignin content of structural litter (kg/ha) (BUI)
		_	3 for smectitic soil group	line 34:	WLSC	=	Carbon content of structural litter (kg/ha) (BUI)
16	7.0T	_	minimum this fragment from a fragminum for an O.O.	line 35:	WLMC	=	Carbon content of metabolic litter (kg/ha) (BUI)
10	ZQI	_		fine 30:	WESEC	_	Caroon content of lighth of structural litter (kg/ha) (BOI)
			(splitting stops when ZQT is reached).	line 37:	WESENC	_	Certain of high sector and the (kg ha) (BOI)
17	ZF	=	minimum profile thickness (M) – stops simula	line 30.	WHSC	=	Carbon content of slow humus (kg/ha) (BUD)
18	ZTK	=	minimum layer thickness for beginning simula	line 40.	WHPC	=	Carbon content of passive humus (kg/ha) (BUD)
			splitting - model splits first laver with thickne	line 41:	WLSN	=	N content of structural litter (kg/ha) (BUI)
			exists the thickest laver is solit	line 42:	WLMN	=	N content of metabolic litter (kg/ha) (BUI)
10	EDM	_	Exists and an except ray of its spin.	line 43:	WBMIN	=	N content of biomass (kg/ha) (BUI)
19	rdM 	=	Fraction of Org C in biomass Pool $(0.03 - 0.03)$	line 44:	WHSN	=	N content of slow humus (kg/ha) (BUI)
20	FHP	=	Fraction of Org C in passive Pool $(0.3 - 0.7)$	line 45:	WHPN	=	N content of passive humus (kg/ha) (BUI)
				line 46:	OBC	=	Observed Carbon content at end of simulation (t/ha)

Soil files

Baumer(U.S.A)

636K	HWSD4	1	0	SCL	33A1			ON	SOL SINT	038TXC. 9	10001TX0
2.00	0.05						i	2 0.05	62 B	9634 2	MUSHACU
2.00	0.05	.00	(0.00	0.00	0.00	0.00	1.82	0.00	2.00	0.05
3.00	2.00										0.00
0.70	0.30	.50	(0.04	1.00	0.10	0.10	2.00	100.00	2.00	10.00
1 20	1 21							1.64	0.86	0.20	0.10
1.30	1.31							1.52	1.48	1.48	1.48
0.00	0.00							0.14	0.17	0.17	0.17
0.00	0.00							0.20 59.48	0.33 55 A8	0.33 55 AQ	0.33 55 AR
0.00	0.00							18 02	17 42	17 42	17 42
48.0	52.00							0.00	0.00	0.00	0.00
24.0	25.00							7.90	7.90	6.60	6.60
0.00	20.00							0.00	0.00	0.00	0.00
0.00	0.00							0.05	0.33	1.33	1.56
4.90	4.70							17.50	15.00	15.00	15.00
0.00	0.00							22.50	22.50	22.50	22.50
0.00	0.00							1.16	1.12	1.12	1.12
0.35	0.95							2.00	5.00	5.00	5.00
0.00	0.00							4.00	8.00	8.00	8.00
0.00	0.00							0.00	0.00	0.00	0.00
5.00	6.00							1.57	1.54	1.54	1.54
0.00	0.00							0.00	0.00	0.00	0.00
0.00	0.00							87.54	27.83	27.83	27.83
0.00	0.00							0.00	0.00	0.00	0.00
0.00	0.00							0.00	0.00	0.00	0.00
0.00	0.00							0.00	0.00	0.00	0.00
0.00	0.00							0.00	0.00	0.00	0.00
1.37	1.41							0.00	0.00	0.00	0.00
0.00	0.00							0.00	0.00	0.00	0.00
0.00	0.00							0.00	0.00	0.00	0.00
0.28	27.78							0.00	0.00	0.00	0.00

Η	W	SD		C	nir	na)		
WSD	4636K	M.SOL	G	RIDID	46	3690	4	2	СМ
0.05	2.00	0.00	1.82	0.00	0.00	0.00	0.00	0.00	0.00
2.00	3.00	200.00	2.00	0.10	0.10	1.00	0.02	0.30	
0.30	0.70								
1.31	1.30								
0.00	0.00								
0.00	0.00								
52.00	48.00)							
25.00	24.00)							
0.00	0.00								
4.70	4.90								
0.00	0.00								
0.95	0.35								
0.00	0.00								
6.00	5.00								
0.00	0.00								
0.00	0.00								
0.00	0.00								
0.00	0.00								
1.41	1.37								

0.28

Crop management :Fertilizer application data

16

Application ratio of N for different fertilizer types, crops, timing and provinces

Application amount for different fertilizer types, crops and provinces

The major fertilizers containing N in China are urea and ammonium bicarbonate (total about 80-90%) , DAP Ratio of basal fertilizer and topdressing fertilizer for different fertilizer types, crops and agriculture regions

This data is mainly based on Chinese literatures, and also refers to US case.

EPIC Output — annual fertilizer use

The EPIC output can generally catch the pattern of fertilizer use from statistics data. The bias for Henan, Shandong and Jiangsu are -21%, -3% and -15%, respectively.

•Tillage: still working on

Generating Site Weather Data

 Weather data of 20 or 30 years should be processed for EPIC spin-up simulations to generate soil files and initial annual plant N demand data, which are used in EPIC application year simulations.

NASA Modern Era Reanalysis for Research and Applications (MERRA) (1979-2010, 0.5° x 0.667°)

 Generating site weather data for application year from WRF output.

CMAQ Simulation

- Simulations using CMAQ v5.0.1
 - * June and November in 2011 simulations
- Two model cases were simulated

Base case

- * Emissions inventory from Tsinghua University
- * No bidirectional NH₃ exchange

Bidi case

- Emissions inventory from Tsinghua University without NH₃ evasion from agricultural cropping sectors + FESTC NH₃ emission
- * Bidirectional NH₃ exchange

Identical model inputs and configurations except for the NH₃ emissions from cropping systems and bidirectional NH₃ exchange

The Object Domain

Target Area -The Whole China Target Year -2011 Horizontal Resolution: -36km×36km;

Future work

- Collect the tillage data of the nine agriculture regions in China (under going)
- * The whole year simulation
- Further evaluating the model results and estimate the impact of major agricultural emission on PM_{2.5} and future air quality
- Further applying this system (e.g. climate change, livestock)

Thank you !