Chenhong Zhou Feb-24-2012 ## **Outline** Objectives Data and methodology • Preliminary results Summary and conclusions On-going and future work # **Objectives** - To quantify seasonal and long-term variations in lower/middle tropospheric ozone over East Asia - To determine the relative importance of tropospheric photochemical production and stratospheric intrusion in the seasonal variation - To classify the synoptic patterns associated with the peak O₃ in the lower/middle troposphere ## O₃ Sounding Data • Three observational sites: | Station 🕫 | Latitude longitude₽ | Observation₽ | Number of | ł | |-------------|---------------------|--------------|---------------|---| | | | | observations₽ | | | Hong kong 🕫 | 22.3° N, 114.7° E₽ | 2000-2010₽ | 432₽ | + | | | ą. | (2002;2003)₽ | | | | Sapporo₽ | 43.1° N, 114.7° E∉ | 2000-2010₽ | 477₽ | ÷ | | | ₽ | | | | | Hilo ₽ | 19.7° N, 155.1° E₽ | 2000-2010₽ | 497₽ | + | | | ē | | | | Variables: Pressure, O₃ partial pressure, temperature Wind speed, Wind direction, Geo-potential height, Relative humidity #### **Observational Sites** Sapporo (JPN 43.1° N, 141.3° E) HK (22.31° N, 114.71° E) Hilo(19.72° N, 155.07° E) # Methodology 1) According to Dalton's law, ozone mixing ration (ppb) is calculated by $$Cx = Px / P$$ where Px is partial pressure of gas x (O3 here), P is the total pressure. Both Px and P are obtained from ozone sounding measurements. 2) O₃, RH are linearly interpolated from the measured heights to the fixed level at vertical resolution of 20 m. #### Month-Height Cross Section of O₃ at HK #### Linking to monthly variation of surface O₃-at HK (Source: Hong Kong EPD's report) #### Month-Height Cross Section of O₃ at Hilo #### Month-Height Cross Section of O₃ at Sapporo # Seasonal and yearly variations of O₃ Averaged over the year 2000 to 2010 at a) Hong Kong, b) Sapporo ,and c) Hilo # Long term trend: Surface O₃ in HK **Source: Hong Kong EPD** ### Yearly variation of O₃ at HK ## Yearly variation of O₃ at Hilo ## Yearly variation of O₃ at Sapporo # Spring/fall variation of O₃ at HK # Spring/fall variation of O₃ at Hilo ### Spring/fall variation of O₃ at Sapporo ## Synoptic patterns | Table 3. | Synoptic | Meteorology | and | Weather | Conditions | of Ozo | one Episodes | |----------|----------|-------------|-----|---------|------------|--------|--------------| | | -, | | | | | | ,,,e mb,,,,, | | Types | Dominant Surface Pressure
Patterns | Major Flow Patterns and Surface
Winds in Hong Kong | Weather and
Atmospheric Conditions | Period of
Frequent
Occurrence | | |--------------------------------------|--|---|---|---|--| | Northerly (N) | continental anticyclone over
northwestern China | straight northerly anticyclonic
flow from Mainland China as
north or northeast winds | dry, clear sky and
occasionally cold and
strong wind | Dec. to March | | | Weak northerly
(wN) | moderate or weak continental
anticyclone over
northwestern China | weak and straight northerly
anticyclonic flow from
Mainland China as weak north
or northwest wind | dry and clear sky | Oct. to early Dec. | | | North-easterly
(NE) | continental anticyclone over
northeastern China, East
China Sea, and southern
Japan | northeasterly anticyclonic flow
from East China Sea and
Taiwan Straits as northeast and
east winds | dry, clear sky and long
sunshine hours | late Sept. to mid.
Mar. | | | Easterly or
southeasterly
(E) | anticyclone centered east of
130° E and north of 20° N | easterly or northeasterly
anticyclonic flow as east or
southeast winds | fairly long sunshine
hours | mid. Apr. to mid
May | | | Trough (T) | low-pressure trough with axis
extending approximately
east-west over south China | northerly anticyclonic flow to the
north of trough and easterly
cyclonic flow to the south; wind
is variable | low wind and stagnant
atmosphere | late May to early
Jun.; mid. Aug.
to mid. Sept. | | | Southerly or
southwesterly
(S) | Quasi-stationary low-pressure
area over Asian continent | cyclonic flow from the South
China Sea as south or southwest
wind | high temperature and
strong solar radiation | June. to Aug. | | | Pacific ridge (P) | ridge of Pacific high-pressure
extending to Taiwan and
southeastern China | straight flow from the Pacific
Ocean as east or southeast
winds | high temperature and
strong solar radiation | June. to Aug. | | | High-pressure
cell (H) | weak high pressure cell over
south China | weak anticyclonic flow with weak
surface winds | clear sky, long sunshine
hours and low wind | early Sept.; late
April to late May | | | Cyclone (C) | Hong Kong within circulation
of a traveling cyclone | cyclonic flow as north or
northwest winds | low-level inversion, hot,
clear sky, and long
sunshine hour | May to early Dec. | | Source: Y. Chan and L. Y. Chan, 2000 #### synoptic patterns #### synoptic patterns - Light winds on 25 May correlated to the presence of a weak high pressure system over the southern part of China. Well-defined boundary layer, light winds, high solar radiation ,such conditions promote photochemical O₃. - Largescale weak northerly winds were deflected at Victoria Harbor to a northwesterly or westerly direction. This help transport of the pollutants emitted from both sides of the harbor and possibly from areas farther north of Kowloon to the HK island. ### **Summary and conclusions** - Consistent with other studies, in spring, especially March and April, high ozone center (yearly average of 70~80 ppb) occurs around 2~4 km AGL in HK. But our analysis shows the stratospheric intrusion plays the most important role in the spring ozone enhancement in the lower troposphere, which is different from the finding in some other studies. - An interesting finding is that high ozone concentrations are also observed in the atmospheric boundary layer (- < 2km) in autumn at HK. This is mainly related to local photochemical production and regional transport from the PRD region (anthropogenic contribution). This phenomenon is not observed at Hilo and Sapporo sites. ## Summary and conclusions (cont.) • The seasonal variation in HK is more evident than other two sites. In HK, the O₃ max season in the lower to middle troposphere is different from that at the surface. The max O₃ occurs in spring for in the upper level whereas the O₃ max season is fall at the surface. This is not observed in Hilo and Sapporo. In Hilo, the max O₃ extends through from the surface to the upper level and the min O₃ season is summer. However, in Sapporo, the min O_3 season is winter. # Summary and conclusions (cont.) • Surface O₃ shows a steady increasing trend over the past 20 years. However, this trend is not clear in the lower to middle troposphere. There are two reasons for this. First, it probably is due to insufficient ozone sounding data (weekly sampling may be not enough to resolve this). Second, the surface contribution is not competitive with the contribution from the upper levels (e.g., stratospheric intrusion). # On-going and future work - Further analysis of ozone sounding data: Necessary - Classification of weather charts associated with ozone peak cases in the lower atmospheric layer (2~4km) in spring and in Hong Kong: sort out the cases and download surface, 850 hpa, 700 hpa weather charts and then to see whether they can be classified. - Combing observational analysis with numerical model, WRF/Chem to better understand the processes or mechanism causing the spring peak ozone cases in HK.