

A discussion on the paper "Tunable diode laser measurements of methane fluxes from an irrigated rice paddy field in the Philippines"

I.J.Simpson, G.W.Thurtell, G.E.Kidd, et al.

JOURNAL OF GEOPHYSICAL RESEARCH IF:3.021(2013)

> Zhao Jiayu 2014.09.26

Outline

- Background
- Objectives
- Experimental Design
- Results and Discussion
- Summary and Conclusion

Background: Methane

- CH₄ is an important greenhouse gas, The global warming potential per unit mass of CH₄ is 63 times that of carbon dioxide in a 20-year time frame; In addition, CH₄ may be an agent for stratospheric ozone layer depletion.
- The atmospheric CH_4 concentration has been rapidly increasing 160% since the industrial revolution (1750) to 1819 ppb.
 - Methane emission from paddy field is one of the major anthropogenic sources of global atmospheric CH₄ emission.however, there were few reports about CH₄ flux measurement in Asia where over 90% of the globle rice are culitivated.

Background:Box Chamber

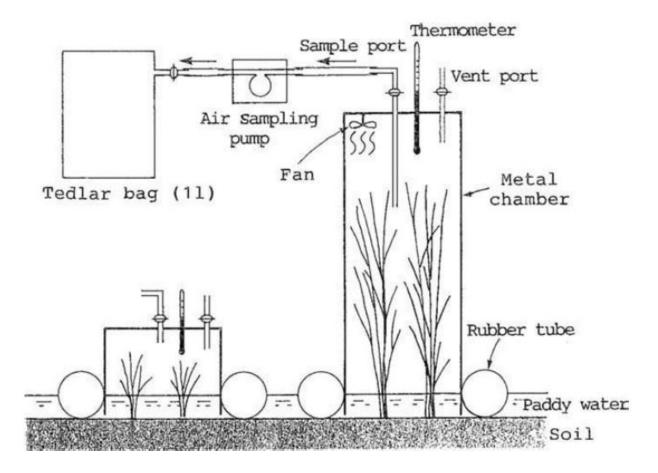


Fig 1 . Schematic illustration of the chambers and the sampling system.

Advantage: Multi point observation; Disadvantage: Bag effects New Method: Tunable Diode Laser Trace Gas Analyzer System

Outline

- **♦**Background
- **♦**Objectives
- ◆Experimental Design
- ◆Results and Discussion
- ◆Summary and Conclusion

Objectives

- By using TDLAS and the other three micrometeorological techniques, the effects of drying, irrigation and traditional hand weeding experiment on CH₄ emissions were investigated.
- The overall goal of the research is to contribute to the current understanding of CH₄ release from rice paddies and thus help in the search for options to mitigate CH₄ emissions.

Outline

- **♦**Background
- **♦**Objectives
- Experimental Design
- ◆Results and Discussion
- ◆Summary and Conclusion

Experimental Design: Sampling Site

Location	14.2° N,121.2° E (Los Banos,Philippines)	Rice seedling	semidwarf rice variety IR72
Area	80m × 100m	Soil	Clayey: PH:6.5 Organic carbon:1.90%
Times	March 9 and 24,1992	Wind direction	northeast

Experimental Design: Floodwater depth

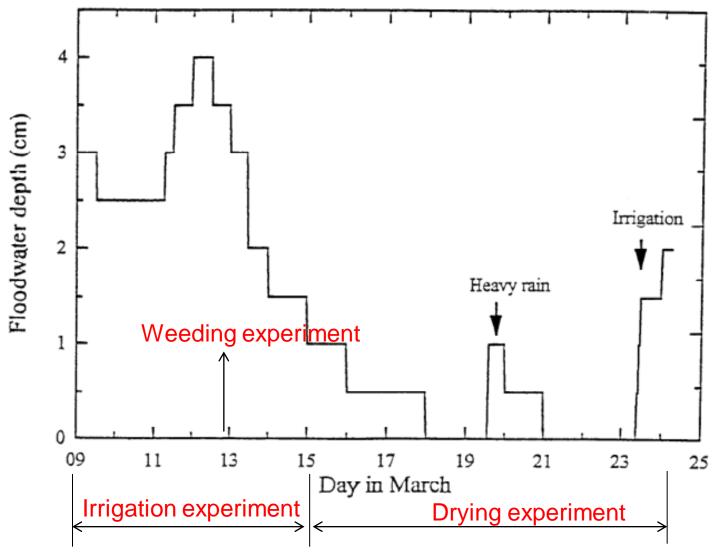
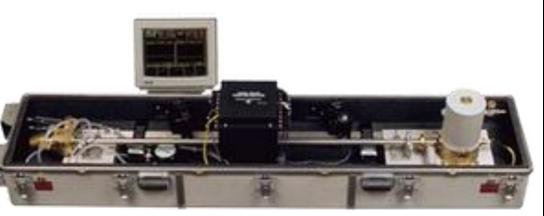


Fig 2. Rice field floodwater depth changes.

Experimental Design: Method


$$F_{me} = -K(\Delta C_{me} / \Delta z)$$

- F_{me} : flux of CH₄ (µg m⁻² s⁻¹)
- K: eddy diffusivity \longrightarrow Bowen Ratio Wind Profile Technique Eddy Correlation Method
- ΔC_{me} : change in CH₄ concentration(µg m⁻³)— TGAS
- $\Delta z(m)$: vertical height difference

Experimental Design: TDLAS Technique

Tunable diode laser absorption spectroscopy (TDLAS) technique is a new method to detect trace-gas qualitatively or quantificationally based on the scan characteristic of the diode laser to obtain the absorption spectra in the characteristic absorption region.

k	2968.4034 cm ⁻¹
width	10 ⁻⁴ cm ⁻¹
laser noise	0.4 ppbv/h
accuracy	>=92%

Experimental Design: TDLAS Technique

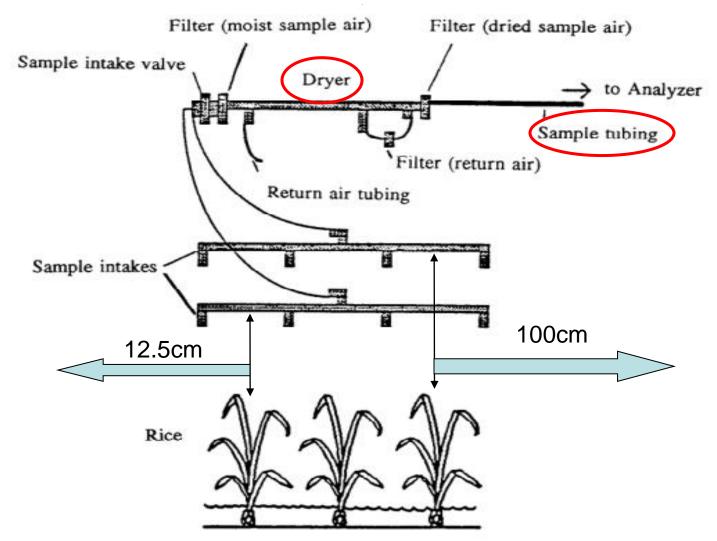


Fig 3. Field assembly for the trace gas analyzer system(TGAS).12

Outline

- **♦**Background
- **♦**Objectives
- ◆Experimental Design
- Results and Discussion
- ◆Summary and Conclusion

Results and Discussion:Irrigation Experiment

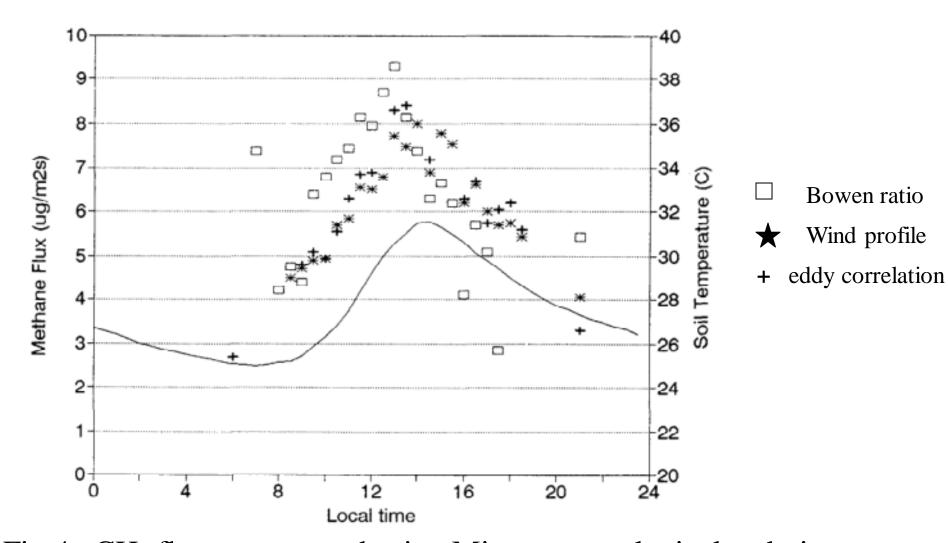


Fig 4. CH₄ fluxes generated using Micrometeorological techniques, (March 14).

Results and Discussion: Weeding Experiment

• Up to 80% of CH₄ produced in soils will be oxidized before they can reach the atmosphere.

• Emission pathway:

Ebullition

Plant-mediated transport

Diffusion through the floodwater

Results and Discussion: Weeding Experiment

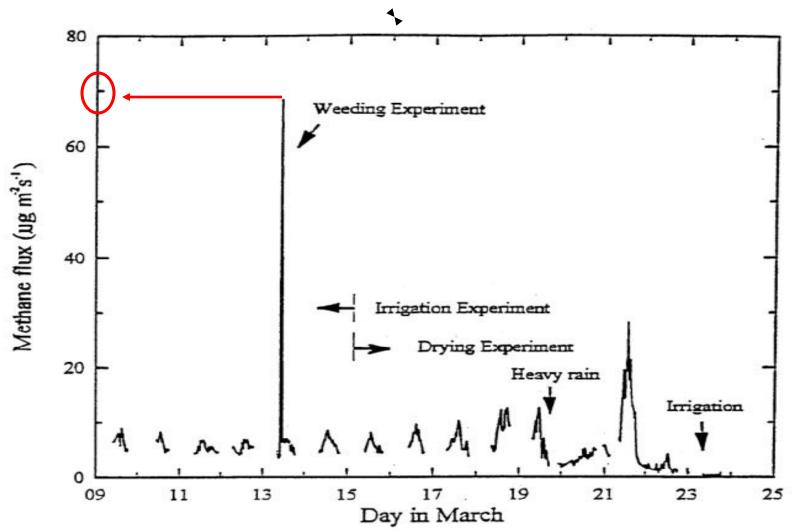


Fig 5. CH₄ fluxes from a rice paddy field during irrigation, weeding, and drying experiments.

Results and Discussion: Drying Experiment

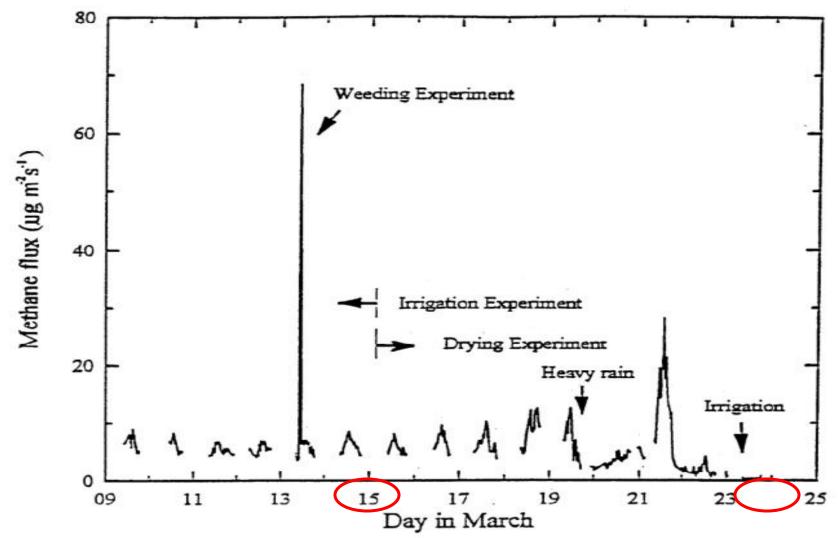


Fig 6 . CH₄ fluxes from a rice paddy field during irrigation, weeding and drying experiments.

Results and Discussion: Micrometeorological Techniques

Table 1 .Average Daytime CH₄ fluxes Calculated Using Three Micrometeorological Techniques

Technique	Average Daytime CH ₄ Flux, μg m ⁻² s ⁻¹	
Bowen ratio	6.22	
Wind profile	5.61	
Eddy correlation	6.24	
Average	$6.02 \ (\sigma = 0.29)$	

significance level:α=0.05

- 1. Daily means of the Bowen ratio fluxes were not statistically different from either the wind profile or eddy correlation.
- 2. The wind profile and eddy correlation means were significantly different.

18

Results and Discussion: The literature

Table.2.CH₄ Emissions Measured From Rice Paddies

Location	Flux, μ g m ⁻² s ⁻¹	Source	
California	2.1	Cicerone and Shetter [1981]	
Spain	1.1	Seiler et al. [1984]	
Italy	1.7-4.4	Holzapfel-Pschorn and Seiler [1986], Schütz et al. [1989a]	
Australia	1.1	Denmead and Freney [1990]	
Japan	0.1 - 4.2	Yagi and Minami [1990]	
China	2.2-8.1	Wang et al. [1990]	
India	0.1 - 7.6	Parashar et al. [1991],	
		Mitra, [1992]	
Thailand	1.0-5.4	Houghton et al. [1992]	
Philippines	6.0	micrometeorology; daytime average	
Philippines	2.7	box chamber; daytime average	


The differences among paddies are caused by some factors: irrigation, soil characteristics, cultivation history, temperature and season, measurement techniques

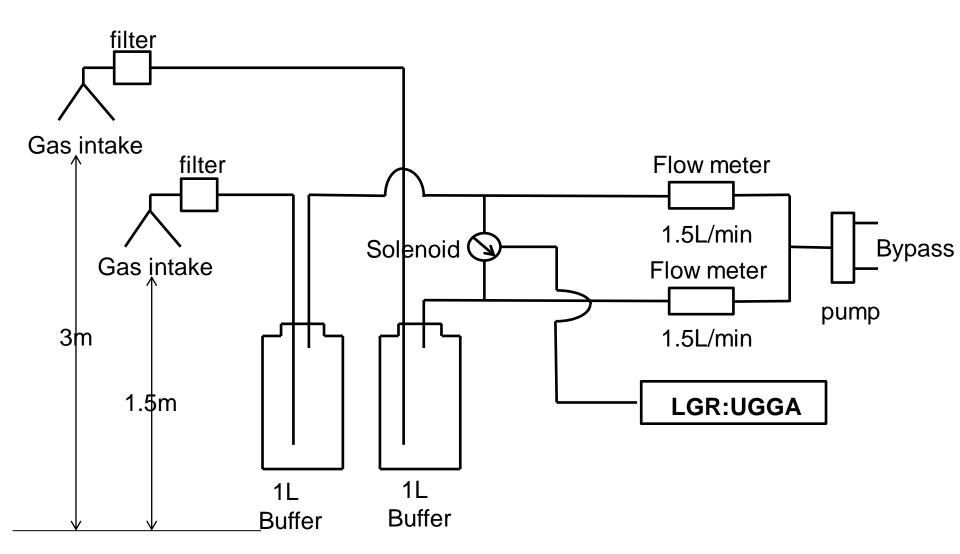
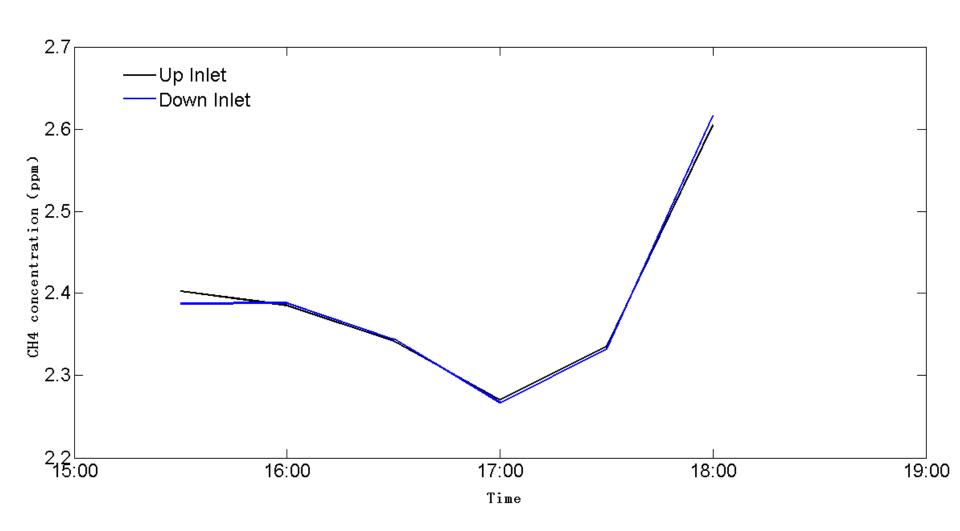

Results and Discussion: Box Chambers

Table.2.CH₄ Emissions Measured From Rice Paddies

Location	Flux, μ g m ⁻² s ⁻¹	Source	
California	2.1	Cicerone and Shetter [1981]	
Spain	1.1	Seiler et al. [1984]	
Italy	1.7–4.4	Holzapfel-Pschorn and Seiler [1986], Schütz et al. [1989a]	
Australia	1.1	Denmead and Freney [1990]	
Japan	0.1 - 4.2	Yagi and Minami [1990]	
China	2.2-8.1	Wang et al. [1990]	
India	0.1–7.6	Parashar et al. [1991], Mitra, [1992]	
Thailand	1.0-5.4	Houghton et al. [1992]	
Philippines	6.0	micrometeorology; daytime average	
Philippines	2.7	box chamber; daytime average	


The discrepancy between the measured CH₄ fluxes from two adjacent fields prompts us to investigate whether or not micrometeorologocal techniques consistently exceed fluxes measured using the box chamber technique.

Outline

- **♦**Background
- **♦**Objectives
- ◆Experimental Design
- ◆Results and Discussion
- Summary and Conclusion

Summary and Conclusion

Irrigation Experiment: The CH₄ fluxes displayed a diurnal trend similar to the daily soil temperature curves, with peak emissions of about 8 µg m⁻² s⁻¹.

Simulated Weeding Experiment: A tenfold increase in CH₄ emissions(to about 70 µg m⁻² s⁻¹) during a brief weeding experiment resulted from soil disturbance.

Drying Experiment: Drying appears to facilitate the release of CH₄ via ebullition and bubble breakage; The CH₄ flux was also arrested when the field was flooded with oxygen-rich water during a heavy rainstorm.

Comparison with Box Chambers: More extensive comparisons of the box chamber and micrometeorological techniques are required to determine whether or not TGAS fluxes consistently exceed those determined by the box chamber technique.

Thank you