

Study on the characteristic of water-soluble ion in PM2.5 of Nanjing based on on-line monitoring

Zhang Yuanyuan 2016.7.15

Outline

- Introduction
- Experimental
- Results and discussion
- Conclusions

Introduction

- Haze pollution caused by particulate matter suspended in the air remains a major environmental issue because of its substantial impacts on climate, air quality, and human health.
- Water soluble inorganic ions (WSII) were found to be the major components of $PM_{2.5}$, especially secondary inorganic ions (sulfate, nitrate and ammonium), which accounted for one third or more of $PM_{2.5}$ (Cao et al., 2012; Kong et al., 2014).
- The most commonly used procedures for collecting aerosols are filterbased methods, but because of their low accuracy it is not simple to quantify ambient aerosols.
- Online analyzer with highly temporal resolution for monitoring aerosols and gases (MARGA) have been developed to solve the problems related to filter-base methods (Acker et al., 2005). The characteristics of water soluble ions in Nanjing based on the results of MARGA were analyzed in this study.

Experimental

- Site : Meteorological observation field, NUIST
- Samples: PM_{2.5}

Table 1	Summary	of data	and	corresponding	instruments
---------	---------	---------	-----	---------------	-------------

Parameter	Duration	Instruments
1. Gases(NH ₃ , HNO ₂ , HNO ₃ , HCl, SO ₂) 2. Aerosols ions(NH ₄ ⁺ , Na ⁺ , K ⁺ , Ca ²⁺ , Mg ² , Cl ⁻ , NO ₃ ⁻ , SO ₄ ²⁻)	Sring:2016.3.3-2016.5.16 Summer:2016.7.11-2016.9.14 Winter:2017.1.15-2017.2.28	MARGA(ADI 2080, Applikon Analytical B. B. Corp., The Netherlands)
Mass concentration of PM _{2.5}	2016.3.1-2017.2	THERMO (TEOM1405-DF, Thermo Scientific, USA)
Meteorological parameters (T, RH, WD,WS, P, visibility)	2016.3.1-2017.2	Vaisala (Meteorological observation field, NUIST)

Fig 1. Time series of mass concentration (μ g/m3) of PM_{2.5}, total water-soluble ions(TWSI) and the proportion of water-soluble ions

• Seasonal variation

Table 2. Statistics of ions in different seasons

	春李(2016)	夏李(2016)	<u>冬季(2017)</u>	
参数	浓度 (µg/m³)	占比	浓度 (µg/m³)	占比	浓度 (µg/m³)	占比
Cl ⁻	1.70	3.54%	0.42	1.47%	2.01	3.87%
NO ₃ -	16.89	35.21%	6.83	23.63%	19.80	38.23%
\$0 ₄ ²⁻	15.87	33.09%	13.10	45.31%	15.52	29.97%
Oxalate	0.78	1.62%	0.65	2.26%	0.51	0.99%
Na⁺	0.28	0.59%	0.14	0.48%	0.38	0.73%
NH4 ⁺	11.01	22.95%	7.08	24.48%	11.97	23.11%
K+	0.88	1.84%	0.53	1.83%	1.22	2.35%
Mg ²⁺	0.07	0.15%	0.02	0.09%	0.08	0.16%
Ca ²⁺	0.58	1.20%	0.13	0.46%	0.24	0.47%
TWSI	47.96		28	28.91		79
TWSI/PM _{2.5} (%)	74.16		64	.12	81.	96
HCI	0.01		0.	20	0.0	00
HNO ₂	2.33		2.98		2.90	
HNO ₃	0.85		1.04		0.92	
SO ₂	17.50		16.23		12.49	
NH ₃	13.95		18.08		9.91	
т (°С)	16	5.8	29	9.1	5.	6
RH (%)	6	64	68		6	2

Fig 2. water-soluble ions in $PM_{2.5}$ in different seasons

Introduction

probability of total mass concentration (%)

• Diurnal variations

• Diurnal variations

Fig 5. Diurnal variations of TWSI, and other ionic constituents in PM2.5

• Backward trajectory Cluster analysis

Table 3. Characteristics of source air mass in Spring

	Cluster1	Cluster2	Cluster3	Cluster4	Cluster5	Cluster6
Ratio	21.10%	31.60%	18.40%	10.20%	10.20%	8.60%
Cl-	1.21±1.92	1.86±2.75	1.81±2.36	1.52±1.82	0.73±1.22	1.04±0.95
NO3-	19.94±16.1 9	17.56±11.7 5	14.62±10.7 7	10.89±11.3 5	9.68±7.50	12.79±6.85
SO42-	14.14±6.03	17.89±13.3 1	16.22±10.5 8	13.45±10.1 1	11.76±7.09	14.25±4.94
C2O4-	0.83±0.35	0.70±0.38	0.77±0.26	0.65±0.30	0.87±0.25	0.60±0.30
Na+	0.17±0.15	0.30±0.28	0.33±0.20	0.34±0.50	0.22±0.23	0.30±0.35
NH4+	11.26±7.46	11.89±8.18	10.11±7.23	8.81±7.20	6.63±4.22	9.23±2.73
K+	0.69±0.59	0.96±1.09	0.94±0.72	0.61±0.50	0.70±0.63	0.76±0.79
Mg2+	0.05±0.04	0.07±0.07	0.06±0.05	0.09±0.06	0.09±0.08	0.03±0.03
Ca2+	0.42±0.35	0.46±0.55	0.70±0.92	0.56±0.48	1.14±1.33	0.26±0.29
PM2.5	79.55±39.8 9	77.11±37.9 1	78.82±35.4 9	54.35±35.3 5	53.34±19.3 7	62.26±23.0 2

Fig 6. Backward trajectory Cluster analysis in Spring

• Backward trajectory Cluster analysis

Table 4. Characteristics of source air mass in Summer

	Cluster1	Cluster2	Cluster3	Cluster4
Ratio	47.00%	26.10%	12.10%	14.80%
Cl-	0.52±1.18	0.10±0.29	0.40±0.81	1.18±2.12
NO3-	9.30±7.94	5.52±7.56	4.62±3.28	4.45±3.83
SO42-	14.84±6.15	12.30±5.21	9.26±5.99	12.36±6.12
C2O4-	0.69±0.23	0.71±0.33	0.60±0.15	0.53±0.18
Na+	0.12±0.12	0.07±0.07	0.11±0.10	0.25±0.18
NH4+	8.64±4.49	3.36±4.30	4.95±3.66	6.04±3.60
K+	0.58±0.52	0.39±0.27	0.43±0.61	0.68±1.15
Mg2+	0.02±0.04	0.01±0.03	0.03±0.03	0.04±0.07
Ca2+	0.17±0.23	0.11±0.21	0.16±0.35	0.08±0.11
PM2.5	50.63±22.31	43.63±17.83	31.68±14.15	38.06±13.42

Fig 7. Backward trajectory Cluster analysis in Summer

• Backward trajectory Cluster analysis

Fig 8. Backward trajectory Cluster analysis in Winter

Table 5. Characteristics of source air mass in Winter

	Cluster1	Cluster2	Cluster3	Cluster4
Ratio	21.10%	31.60%	18.40%	10.20%
Cl-	1.75±1.51	2.13±1.56	2.51±3.09	2.32±1.82
NO3-	17.97±14.51	15.35±9.40	22.98±10.82	24.49±11.35
SO42-	15.07±11.91	16.23±10.54	15.74±12.47	11.98±10.11
C2O4-	0.50±0.32	0.46±0.26	0.55±0.27	0.59±0.30
Na+	0.38±0.24	0.29±0.20	0.36±0.23	0.35±0.50
NH4+	11.41±8.7	11.36±6.14	12.79±5.34	12.26±7.20
K+	1.02±0.76	0.96±0.73	1.77±2.08	1.20±0.50
Mg2+	0.09±0.08	0.07±0.07	0.09±0.1	0.08±0.06
Ca2+	0.02±0.19	0.17±0.16	0.32±0.36	0.41±0.48
PM2.5	57.65±35.84	54.21±21.80	71.55±23.88	71.07±35.35

• Acidity of particles

Fig 9. Backward trajectory Cluster analysis in Winter

• Backward trajectory Cluster analysis

Fig 10. Backward trajectory Cluster analysis in Winter

Table 5. Characteristics of source air mass in Winter

	Cluster1	Cluster2	Cluster3	Cluster4
Ratio	21.10%	31.60%	18.40%	10.20%
Cl-	1.75±1.51	2.13±1.56	2.51±3.09	2.32±1.82
NO3-	17.97±14.51	15.35±9.40	22.98±10.82	24.49±11.35
SO42-	15.07±11.91	16.23±10.54	15.74±12.47	11.98±10.11
C2O4-	0.50±0.32	0.46±0.26	0.55±0.27	0.59±0.30
Na+	0.38±0.24	0.29±0.20	0.36±0.23	0.35±0.50
NH4+	11.41±8.7	11.36±6.14	12.79±5.34	12.26±7.20
K+	1.02±0.76	0.96±0.73	1.77±2.08	1.20±0.50
Mg2+	0.09±0.08	0.07±0.07	0.09±0.1	0.08±0.06
Ca2+	0.02±0.19	0.17±0.16	0.32±0.36	0.41±0.48
PM2.5	57.65±35.84	54.21±21.80	71.55±23.88	71.07±35.35

(3) The sulfur oxidation ratio (SOR): are available

indicators used to quantitatively characterize the

secondary transformation reactions of SO₂.(Yang

• Generation and Evolution of SO₄²⁻

(1) Gas-phase oxidation reaction

 $SO_2+OH+M \rightarrow HOSO_2+M$ $HOSO_2+O_2 \rightarrow HO_2+SO_3$ $SO_3+H_2O+M \rightarrow H_2SO_4+M$ $H_2SO_4+NH_3 \rightarrow (NH_4)_2SO_4/NH_4HSO_4$

(2) Liquid chemical reaction

 $SO_2+H_2O \rightarrow HSO_3^++H^+$ $HSO_3^++H_2O_2 \rightarrow SO_2OOH^++H_2O$ $SO_2OOH^++H^+ \rightarrow H_2SO_4$ $H_2SO_4+NH_3 \rightarrow (NH_4)_2SO_4/NH_4HSO_4$

SOR= $n-[SO_4^2-]/n-[SO_4^2-+SO_2]$

Shi,2012)

T (°C) spring summer winter 1.0 1.0 1.0 40 35 0.8 0.8 0.8 30 25 8.0 B Nor 808 808 80S 80S 20 15 0.4 0.4 0.4 10 5.0 0.2 0.2 0.2 0.0 -5.0 0.0 0.0 0.0 100 60 100 20 40 60 80 20 40 80 20 60 80 100 0 40 RH(%) RH(%) RH(%) Fig 11. The relationship between SOR and RH/T in each

season

15

• Generation and Evolution of SO₄²⁻

Fig 12. The relationship between fraction of SO_4^{2-} in $PM_{2.5}$, the concentration of SO_2 and RH

• Effect of *T* and RH on NH4NO3 Gas-Particle Distribution

(1) Gas-phase oxidation reaction		(2) Heterogeneous reaction: Mainly
Daytime:	$RO_2 + NO \rightarrow RO + NO_2$	occurs at the sea salt surface
	$O_3 + NO \rightarrow O_2 + NO_2$	$HNO_3 + NaCl \rightarrow NaNO_3 + HCl$
	$HO_2 + NO \rightarrow OH + NO_2$	
	$NO_2 + OH \rightarrow HNO_3$	
	$NO_2 + O_3 \rightarrow NO_3 + O_2$	
Nighttime:	$NO_2 + NO_3 \leftrightarrow N_2O_5$	
	$N_2O_5 + H_2O \rightarrow 2HNO_3$	

• $[NO_3^{-}]/[SO_4^{2-}]/[NH_4^{+}]/[SO_4^{2-}]$

Fig 13. Relationship between $[NO_3^-]/[SO_4^{2-}]$ and $[NH_4^+]/[SO_4^{2-}]$

Total fitting result :Y=0.81x-1.37, R²=0.88 Assume $[NO_3^-]/[SO_4^{2-}] = 0$, $[NH_4^+]/[SO_4^{2-}] = 1.69$ as a critical value to determine a rich or poor NH_4^+ environment.

city	value	author
Guangzhou	1.50	X Huang,2011
Shanghai	1.61	Y Shi,2012
Beijing	1.66	K He,2012

• Excess $[NH_4^+]$

 $Excess[NH_4^+] = ([NH_4^+]/[SO_4^{2-}]-1.69)*[SO_4^{2-}]$

city	slope	author
Chongqing	0.65	K He,2012
Shanghai	0.86	Y Shi,2012
Beijing	0.95	K He,2012

Fig 14. Relationship between $[NO_3^-]/[Cl^-]$ and Excess $[NH_4^+]$

• NH4NO3 Gas-Particle Distribution

The mass concentration ratios of $HNO_3/(HNO_3 + NO_3^-)$ and $HCl/(HCl+ Cl^-)$ can be evaluated to understand phase partitioning of these semi-volatile species (Du et al., 2010; Mehlmann and Warneck,1995; Poschl et al., 2007). The higher $HNO_3/(HNO_3 + NO_3^-)$ and $HCl/(HCl+ Cl^-)$ indicate that the semi-volatiles are more favored to exist as gas phase.

Fig 15. Relationship between F_{HNO3} and T,RH

• Diurnal variations

Fig 16. Diurnal variations of F_{HNO3} and T, RH in haze and non-haze day

Conclusions

- NH₄⁺, SO₄²⁻, NHO₃⁻ were the major ions accounting for 23.41%, 35.17% and 33.31% of TWSI, respectively.
- Seasonal variation of $PM_{2.5}$ mass loading was winter>spring>summer. TWSI was the main component in $PM_{2.5}$ in each season, with the average ranging from 64.12-81.96µg/m3, contribution of NO_3^- showed an increase trend with the ascending $PM_{2.5}$ mass concentration, exceeding that of SO_4^{-2-} and become the major WSI in $PM_{2.5}$.
- SOR increased with elevated RH, indicating the important role of aqueous phase oxidation for SO_4^{2-} formation.
- NO₃-and Cl- mainly existed as NH₄NO₃ and NH4Cl in PM_{2.5}, wich are semivolatile. High temperature also facilitated the particle to gas partitioning, especially when T >20°C, F_{HNO3} is rapidly increased.