Characteristics and Estimation Analysis of CO₂ and CH₄ Emission from Vehicle in Nanjing

ZHANG Xue 2017-4-14

Outline

- Background
- Materials and Methods
- Results and Discussion
- Conclusion

Background

- ◆ CO₂ and CH₄ are the most important greenhouse gases. Vehicles are their common source of emission(IPCC, 2013). Greenhouse gas emission from vehicles account for more than 70% of total traffic emission (He, 2005).
- In recent years, the number of vehicles in China is growing rapidly(Li, 2013), particularly the rapid growth of the number of natural gas vehicles(Lu, 2015), further exacerbated the CH₄ emission of urban traffic.
- ◆ This paper aimed to clear the characteristics of CO₂ and CH₄ on the road and its influencing factors, and analysis the reliability of methods by contrasting two estimation methods.

Materials and Methods

Observation site

1. Main roads (Figure 1)

2. Tunnels

Changjiang River Tunnel \
Yangtze River Tunnel \
Xuanwu Lake tunnel \
Jiangshan Street Tunnel \
Drum tunnel \
Tongji-men tunnel \

A, B, C represent typical sections of Xinjiekou, Hongshan street and Cemetery Road

Fig.1 Image of the observation route

Materials and Methods

experimental date:

1. October 17, 18, 20, 23, 2014

Instrument: LGR gas analyzer

September 11, 2015
 April 18, 2016

-采气管 Time:

computer、GPS video camera

Fig.2 Schematic of instrument installation and calibration

Materials and Methods

Estimation method		Formula	Method	References
"Bottom- up"	IPCC method	$F_i = \sum_{1}^{n} f_i \times E_i$	CH ₄ :CO ₂	WRI/WBCSD,2009
"Top- down"	Atmospheric concentration observation method	/	$\Delta CH_4:\Delta CO_2$	Hsu et al., 2010 Wang et al., 2004 Pataki et al. 2005

IPCC method:

$$f_i = W_i = P_i \times T_i \times M_i/g_i$$

 f_i : the activity data;

 W_i : the amount of vehicle fuel consumption;

 P_i : vehicle ownership;

 T_i : fuel type coefficient of vehicle;

 M_i : annual average mileage of vehicle;

 $\boldsymbol{g_i}$: fuel economy of vehicles;

$$E_i = e_i \times q_i$$

 E_i : proposed emission coefficient;

 e_i : original emission coefficient;

 q_i : calorific value of china.

◆Temporal variation of CO₂ and CH₄ on main road

Fig. 3 Diurnal variation of mean CO₂ and CH₄ concentration on the main roads

◆Spatial variation of CO₂ and CH₄ on main road

Fig. 4 Bar graph of mean CO₂ and CH₄ concentration on the different main road

♦ Variation of CO₂ and CH₄ in Tunnel

Fig.5 Time series of CO₂ and CH₄ concentration in Changjiang River Tunnel

Variation of CO₂ and CH₄ in Tunnel

Fig.6 Time series of CO₂ and CH₄ concentration in Nanjing Tunnel

Influential factors of CO₂ and CH₄ on main road

Fig.7 Time series of CO₂ and CH₄ concentration on the traffic main road in the 11:30 period of October 20, 2014

11

Influential factors of CO₂ and CH₄ on main road

Fig.8 Relationship between ΔCO_{2} , ΔCH_4 and traffic volume, taxi / traffic volume on the road

12

 \triangle CH₄: \triangle CO₂ and its diurnal variation

 \bigcirc , \triangle , \Leftrightarrow represent road 1, road 2, road 3; hollow and solid means weekday and weekends

Fig.9 Fitting diagram of mean ΔCH_4 concentration and mean ΔCO_2 concentration on the traffic main road and its diurnal variation

$\triangle CH_4:\Delta CO_2$ in Nanjing Tunnel

Tunnel	$\Delta CH_4:\Delta CO_2$
Yangtze River Tunnel	0.0028
Xuanwu Lake tunnel	0.0043
Jiangshan Street Tunnel	0.00064
Drum tunnel	0.0062
Tongji-men tunnel	0.0035
Jiqing-men tunnel	0.0016

Fig. 10 Fitting diagram of CH₄ and CO₂ in Nanjing Tunnel

♦Influential factors of ΔCH₄:ΔCO₂

Table.1 Atmospheric ΔCH_4 : ΔCO_2 of Nanjing roads under different conditions

	$\Delta \text{CH}_4:\Delta \text{CO}_2$			
Road	Starting or braking	Smooth running	No NGV	Only NGV
1	0.0098	0.0062	0.0054	0.0124
2	0.0120	0.0056	0.0056	0.0072
3	0.0115	0.0063	0.0033	0.1387

♦ Influential factors of ΔCH₄:ΔCO₂

Fig.11 Relationship between ΔCH_4 : ΔCO_2 and traffic volume, taxi / traffic volume on the typical road

Estimating CH4 emissions by IPCC method

Table.2 List of CH₄ emission of vehicle in Nanjing in 2014

		Total fuel	Proposed emission	
Vehicle	Fuel	consumption	coefficient of CH ₄	CH ₄ emission
		(L or m^3)	(KgCH4/(L or m3))	(10 ⁴ ton)
	Gasoline	9.27×10^{9}	8.16×10^{-4}	0.76
Passenger	Diesel	5.14×10^{6}	1.44×10^{-4}	0.000074
	CNG	1.21×10^8	3.81×10^{-3}	0.046
	Gasoline	5.37×10^{8}	8.16×10^{-4}	0.044
Cargo	Diesel	1.19×10^{9}	1.44×10^{-4}	0.017
	CNG	0	3.81×10^{-3}	0
	Gasoline	5.06×10^{7}	8.16×10 ⁻⁴	0.0041
Other	Diesel	5.63×10^{7}	1.44×10^{-4}	0.00081
	CNG	0	3.81×10^{-3}	0
Total	/	/	/	0.87

◆Estimating CH₄:CO₂ emission ratio by IPCC method

Table 3 List of CH₄:CO₂ emission ratio of vehicle in Nanjing

	CO ₂ (10 ⁴ ton)	$CH_4(10^4 ton)$	CH ₄ :CO ₂
2010	1215.04	0.40	0.00090
2011	1682.64	0.54	0.00089
2012	1934.24	0.63	0.00090
2013	2240.42	0.74	0.00091
2014	2601.17	0.87	0.00092

- Comparative analysis of estimation methods
 - (1) Atmospheric concentration observation
 - > Regional representation
 - Natural gas leakage
 - > Other emission sources
 - (2) IPCC method
 - > Method applicability
 - **Emission coefficient**
 - > Statistical data

Conclusion

- ▶ The diurnal variation of CO₂ concentration in the main road in Nanjing showed bimodal distribution, and the two peaks appeared in 07:30 and 17:30. The spatial variation of CH₄ concentration was higher than the spatial difference of CO₂ concentration on the road. Due to the "piston wind" in the tunnel, the CH₄ concentration in tunnel was gradually increased from the inlet to the outlet.
- There was a significant linear correlation between CH_4 concentration and CO_2 concentration on the road. The atmospheric ΔCH_4 : ΔCO_2 value on the main road was 0.0090. The diurnal variation showed "W" type; The range of atmospheric ΔCH_4 : ΔCO_2 value in Nanjing experiment tunnels was 0.00064-0.0062.
- Traffic volume was the main factors for the increase of CO_2 and CH_4 concentration on road. There was a significant positive correlation between the atmospheric ΔCH_4 : ΔCO_2 value and the proportion of natural gas taxis, but the traffic volume was not.
- For CH₄ emission, the difference analysis of the two methods shows that the estimation of the IPCC method was underestimated, and the estimation of the atmospheric concentration observation method was credible.

Thank you