

Temporal and Spatial Variabilities of the CH₄ Fluxes in Small Ponds and Its Influencing Factors

ZHANG Xiufang 2018/04/27

Outline

- Background
- Materials and Methods
- Results and Discussion
- **■** Conclusion

Background

- ■CH₄ is an important greenhouse gas with warming potential globally about 20 times than CO₂ (Cicerone and Oremland, 1988; Wuebbles and Hayhone, 2002).
- ■0.583PgC/yr¹ were omitted from very small ponds globally, and small ponds make up only 8.6% of the global surface area, yet comprise 15.1% of CO₂ diffusion and 40.6% of diffusive CH₄ emissions (Holgerson and Raymond, 2016).
- There are **four** pathways for methane transportation from lake sediment to atmosphere: ebullition, diffusion, aquatic vegetation, storage in water column, where ebullition is the major (Bastviken et al., 2004).

Purpose

- ■To quantify the ratio of CH₄ ebullition to total CH₄ flux;
- ■To estimate the average annual emission of CH₄ ebullition flux and the average annual emission of CH₄ diffusion flux.

Materials and methods

Fig.1 Locations of the 10 observation sites in the two ponds

Time duration:

2016summer 2016/07/27-2017/08/13 2017spring 2017/05/08-2017/05/21 2017summer 2017/07/18-2017/08/03 2017autumn 2017/10/27-2017/11/10

■ Inverted-funnel: (gas samples)

Intensive sampling: 06/12/18/24 LST

Daily sampling: 08-09 LST

Headspace balance method: (water samples)

Daily sampling: 12 LST

Methods

Inverted-funnel method

$$F = \frac{C_{\text{CH}_4} \times V \times M}{A \times t \times V_{\text{m}}} \times \frac{1}{1000}$$

(Wik et al., 2013)

Headspace balance method

$$F = K (C_{W} - C_{eq})$$
(Cole & Caraco, 1998)

Auxiliary observation

CO₂ gas concentration CH₄ gas concentration

Air temperature/pressure
Humidity/wind speed and
wind direction/
radiation/gradient water
temperature

Results and Discussion-1 Temporal Variabilities of the CH₄ Fluxes

Time series of meteorological factors

Fig.2 Time series of meteorological variables during the observation period

Diurnal variation of CH₄ ebullition flux

Fig.3 Diurnal variation of methane ebullition flux during the intensive campaign

Seasonal variation of CH₄ ebullition flux

Summer>autumn>spring

Fig.4 Seasonal variation of methane ebullition flux during the daily campaign

Seasonal variation of CH₄ diffusion flux

Summer>spring>autumn

Fig.5 Seasonal variation of methane diffusion flux during the daily compaign

Seasonal variation of CH₄ bubble ratio

Table 1 Ratio of CH₄ ebullition flux to the total CH₄ flux in different seasons

Time		Pond A				Pond B			
	/n	Ebullitio n Flux	Diffusion Flux	Total Flux	Bubble Ratio	Ebullition Flux	Diffusion Flux	Total Flux	Bubble Ratio
	day	$/\text{mg}\cdot(\text{m}^2\cdot\text{d})^{-1}$			/%	$/\text{mg}\cdot(\text{m}^2\cdot\text{d})^{-1}$			/%
2016 summer	14	121.78	3.38	125.16	97.30	161.08	3.79	164.87	97.70
2017 spring	12	0.71	0.14	0.85	83.64	120.31	0.19	120.50	99.84
2017 summer	14	255.07	0.85	255.92	99.67	330.82	7.43	338.25	97.80
2017 autumn	12	2.54	0.26	2.80	90.78	186.01	0.13	186.14	99.93

Results and Discussion-2 Spatial Variabilities of the CH₄ Fluxes

Spatial patterns of CH₄ ebullition flux

Fig.7 Spatial patterns of the CH₄ ebullition flux at the sampling locations

Spatial patterns of CH₄ diffusion flux

Fig.9 Spatial patterns of the CH₄ diffusion flux at the sampling locations

Spatial patterns of CH₄ fluxes

Fig. 10 Spatial patterns of the CH₄ fluxes in the two ponds

Annual emission of CH₄ ebullition flux and diffusion flux

Table 2 annual emissions of CH₄ ebullition flux and CH₄ diffusion flux

	Ebullition Flux /mg·(m ² ·d) ⁻¹	Diffusion Flux /mg·(m²·d) ⁻¹	Total Flux mg·(m²·d) ⁻¹
2016 summer	143.36	2.61	145.97
2017 spring	58.11	0.061	58.17
2017 summer	331.97	4.14	336.11
2017 autumn	11.13	NaN	11.13
annual average	102.30	1.72	103.45

Results and Discussion-3 CH₄ Ebullition Flux of Influencing Factors

CH₄ ebullition flux and sediment temperature

Fig.11 Time series between CH₄ ebullition flux and sediment temperature

CH₄ ebullition flux and sediment temperature

Fig.12 Relationship between CH₄ ebullition flux and sediment temperature

CH₄ ebullition flux and temperature at 20cm

Fig.13 Time series between CH₄ ebullition flux and temperature at 20cm

CH₄ ebullition flux and temperature at 20cm

Fig.14 Relationship between CH₄ ebullition flux and temperature at 20cm

CH₄ ebullition flux and water depth

Fig.15 Relationship between CH₄ ebullition flux and water depth

CH₄ ebullition flux and wind speed

Fig.16 Relationship between CH₄ ebullition flux and wind speed

Comparison with other studies

Table3 Comparisons of the CH₄ ebullition flux in the inland water bodies in different regions

Latitude	Wetland	Region	Sampling Time	Ebullition	Number	Bubble	Reference
		/Country		Flux	/n	Ratio	
				/mg·(m²·d) ⁻¹		/%	
60°~90°N	3 lakes	Stordalen	2009-06~2009-09,	10.0~22.6	572~1253	_	[20]
		mire/Sweden	2012-06~2012-09				
30°~60°N	Ponds	Hubei/China	2013-07~2013-10	—	—	91.7~99.7	[43]
	5 ponds	Yichang/Chin a	2014-11~2015-10	106.1~417.8	_	98.3~99.3	[17]
	Pond	YIchang/Chin a	2013-07-22~ 2013-07-24	595.2	_	96.4~99.7	[18]
	2 ponds	Anhui/China	2016-07~2017-11	102.30	450	83.6~99.9	This study
	Hua lake	Qinghai— TIbetan/China	2006-06~2007-08	362.4	—	_	[44]
	Wuliangsuhai lake	Neimenggu/ China	2003~2004	53.0~408.0	_	_	[27]
	Priest Pot	The United Kimdom	1997-05~1997-10	192	_	96	[15]
	Catchment	Seberia	2014-07~2014-08	15.4	_	_	[45]
	Thermokarst lake	Seberia	2003-04~2004-05	46.7	_	_	[46]
	10 Shallow lakes	Qu &bec/ Canada	2011-06~2011-08, 2011-10	73.8	98		[19]
	3 lakes	Qu ébec/ Canada	2012-05~2012-0511, 2014-07~2014-09	17.6	139	_	[19]
	Beaver pond	Thompson/ Canada	1994-05-01~ 1994-09-15	83.8	—	-	²⁶ [25]

(continued)

Latitude	Wetland	Region /Country	Sampling Time	Ebullition Flux /mg·(m²·d) ⁻¹	Number /n	Bubble Ratio /%	Reference
0~30°N	Orinoco River	Venezuela	1991-07~1992-10	114	_	65	[47]
	Lago Loiz lake	Puetro/ Panama	1994-07-26~ 1994-07-27	8~24	_	_	[26]
	Gatun lake	Panama	1988-02~1988-05	5~1088	_	_	[16]
0~30°S	Peatland lake	Panama	1988-11~1988-12	40	40	_	[48]
	Manaus lake	Amazon	1988-01~1988-12	44.8	90	59~73	[48]
	Calado lake	Amazon	1986-09	164.8	_	69	[49]
	16 lakes	Pantanal	2006-09, 2006-12, 2008-11	131.8~216	24	91	[29]
	Miranda river	Pantanal	2004-03, 2004-06, 2004-09, 2004-12, 2005-03	142.4		90	[50]

CH₄ ebullition flux with latitude

Fig.18 The CH₄ ebullition fluxes in different latitude ranges

Fig.19 The CH₄ bubble ratios of different inland water bodies

Conclusion

- There were significant **temporal** (seasonal and interannual) **variability** and **spatial patterns** for the CH_4 ebullition flux and CH_4 diffusion flux, and also diurnal variation for the CH_4 ebullition flux.
- In the four observation periods, average CH₄ ebullition flux was 102.30 mg·(m²·d)⁻¹, annual CH₄ diffusion flux was 1.72 mg·(m²·d)⁻¹, and the ratio of the CH₄ ebullition fluxes to the total CH₄ fluxes was always higher than 83%, which indicated bubbling was the main pathway of CH₄ emission from small ponds.
- ■The main controlling factors for the temporal variability of the CH₄ ebullition flux were sediment temperature, water temperature at 20 cm depth, water depth and wind speed.

