

A discussion of "Urban adaptation can roll back warming of emerging megapolitan regions"

By Matei Georgescu, et al.,2014 in PNAS

Reporter: Zhai xuefei

Outline

- Background
- Objective
- Experiment Details
- Results & Discussion
- Conclusions

1.Background

 Urban areas are hot spots that drive multisector environmental change. Consumption and production of resources for use within urban environments have local and remote implications for ecosystem services, hydroclimate, energy provision, health, and other factors of human wellbeing.

 Continued conversion of existing lands to urban landscapes has the potential to drive significant local and regional climate change, compounding global warming. Land use change can have important impacts on local weather and climate, however, the potential for impacts at large regional, continental, and even global scales has been less well-studied.

 US population projections for 2100 range from 380 to 690 million inhabitants, leading to 208,000–261,000 km² of new urban land use relative to 2000.

2. Objective

- Comparison of several plausible urban growth futures with climate change effects offers an unprecedented exploration of ranges of impacts and adaptation strategies.
- To explore hydro climatic impacts of 21st century urban expansion across the United States and examine the efficacy of commonly proposed urban adaptation strategies in context of longterm global climate change.

3. Experiment Details

Table 1. Naming convention of experiments

Control A2 ICLUS B1 ICLUS A2 green roofs A2 cool roofs A2 green–albedo Baseline urban extent Maximum urban expansion Minimum urban expansion As A2 ICLUS with green roofs As A2 ICLUS with cool roofs As A2 ICLUS with hybrid roofs

Table S2. Model parameterizations used for all experiments.

WRF Specifications Model Version: Version 3.2.1 ΔX, ΔY, 20-km Horizontal Grid: 310 (X-dir.); 200 (Y-dir.) Number of Points: Vertical Levels: 30 levels Initialization Time: See Table S December 31, 21Z 2008 Terminal Time: January 1, 00Z 2001 - December 31, 21Z 2008 Analysis Time: ΔT : 90 seconds RRTM (long wave); RRTMG (shortwave) **Radiation Scheme:** Surface Model: Noah Cumulus Scheme: Kain-Fritsch Microphysics Scheme : WSM-3 **PBL Scheme**: Mellor-Yamada-Janjic Surface Layer : Eta similarity 3-category Urban Canopy Model **Urban Model**: **Initial and Lateral Boundary Conditions:** FNL

Naming Convention	on Spin up Period	Analysis Period	
Control			
Control_1	JAN 2000 – DEC 2000	JAN 2001 – DEC 2008	
Control_2	JUL 2000 – DEC 2000	JAN 2001 – DEC 2008	
Control_3	_	JAN 2001 – DEC 2008	
A2 ICLUS			
A2_1	JAN 2000 – DEC 2000	JAN 2001 – DEC 2008	
A2_2	JUL 2000 – DEC 2000	JAN 2001 – DEC 2008	
A2_3	_	JAN 2001 – DEC 2008	
B1 ICLUS			
B1_1	JAN 2000 – DEC 2000	JAN 2001 – DEC 2008	
B1_2	JUL 2000 – DEC 2000	JAN 2001 – DEC 2008	
B1_3	-	JAN 2001 – DEC 2008	
A2-GreenRoofs			
A2_GreenR1	JAN 2000 – DEC 2000	JAN 2001 – DEC 2008	-
A2_GreenR2	JUL 2000 – DEC 2000	JAN 2001 – DEC 2008	
A2_GreenR3		JAN 2001 – DEC 2008	
A2-CoolRoofs			
A2_CoolR1	JAN 2000 - DEC 2000	JAN 2001 - DEC 2008	
A2_CoolR2	JUL 2000 - DEC 2000	JAN 2001 – DEC 2008	Table S
A2_CoolR3	-	JAN 2001 – DEC 2008	Naming
A2-GreenAlbedo			conver
A2_GreenAlb1	JAN 2000 - DEC 2000	JAN 2001 - DEC 2008	of all
A2_GreenAlb2	JUL 2000 - DEC 2000	JAN 2001 – DEC 2008	experir
A2_GreenAlb3		JAN 2001 – DEC 2008	perforn

Materials and Methods

- We have used the advanced research version of the WRF (version 3.2.1).
- Initial and boundary data were obtained from the Research Data Archive.
- The original data are available from the Research Data Archive in dataset number ds083.2.
- We have used US National Centers for Environmental Prediction Final Analyses data, which are available on a 1° × 1° global grid starting in 1999, with a 6-h temporal frequency.
- To compare urban relative to estimated future greenhouse gas-induced climate change, Lawrence Livermore National Laboratory (LLNL)-Reclamation-Santa Clara University (SCU) bias-corrected statistically downscaled climate projection data derived from the World Climate Research Program's Coupled Model Intercomparison Project Phase 5 multimodel dataset were obtained.

4. Results & Discussion

Fig.1. Simulated June–July–August (JJA) 2-m air temperature difference between A2 and control (° C).

Fig. S5. As Figure 1, but for MAM.

Fig. S6. As Figure 1, but for SON

Fig. S7. As Figure 1, but for DJF.

Fig. S8. As Figure 1, but for entire year.

Fig.2. Simulated JJA precipitation difference between
(A) A2 and control and
(B) cool roofs and control.
Units are millimeters day⁻¹.

Fig. S13. As Figure 2 but for MAM.

Fig. S14. As Figure 2 but for SON.

Fig. S15. As Figure 2 but for DJF.

Fig. 3. Simulated JJA urban relative to greenhouse gas-induced impacts on 2-m air temperature (units are $^{\circ}$ C $^{\circ}$ C $^{-1}$).

supporting information

- Representative Concentration Pathway 2.6 (RCP2.6) : The RCP2.6 emission and concentration pathway is representative of the literature on mitigation scenarios aiming to limit the increase of global mean temperature to 2° C. Compared to the total set of Representative Concentration Pathways RCP2.6 corresponds to the pathway with the lowest greenhouse gas emissions.
- Representative Concentration Pathway 8.5(RCP8.5): The RCP8.5 combines assumptions about high population and relatively slow income growth with modest rates of technological change and energy intensity improvements, leading in the long term to high energy demand and GHG emissions in absence of climate change policies. Compared to the total set of Representative Concentration Pathways RCP8.5 thus corresponds to the pathway with the highest greenhouse gas emissions.

 $\Delta \mathsf{T}_{\mathsf{URB}}{}^{*} \ (^{\circ}\mathsf{C}); \ \Delta \mathsf{T}_{\mathsf{GHG}}{}^{\dagger} \ (^{\circ}\mathsf{C}) \ \Delta \mathsf{E}_{\mathsf{URB}}{}^{\ddagger} \ (\%); \ \Delta \mathsf{E}_{\mathsf{GHG}}{}^{\$} \ (\%)$

California	\frown		
A2	1.29, 5.5 -	+ (6–26); + (28–110)	
B1	0.69; 0.99	- (3–14); + (5–20)	
Cool roofs	-1.45	- (1-22)	* • Urban avpancion/adaptation
Green roofs	-0.24	- (1-5)	
Green–albedo roofs	-1.66	- (8-33)	scenario minus control.
Arizona	\sim		
A2	0.94/ 4.86	+ (5-19); + (24-97)	Greenhouse gas-induced
B1	0.26, 1.18	+(1-5);+(6-24)	$(mean of 2070_2000 minus)$
Cool roofs	-0.47	- (2-9)	(mean of 2019–2099 minus
Green roofs	-0.15	- (1-3)	mean of 1990–2010) climate
Green–albedo roots	-0.80	- (4-16)	
lexas	4 45. 5 34	16 22 (26 105)	cnange.
AZ D1	1.15; 5.24	(+(6-23), -(6-23))	+ · Projected changes on
BI Cool roofs	0.71; 1.14	+(4-14); +(6-23)	
Green roofs	- 1.24	(2-9)	energy demand for urban-
Green-albedo roofs	-0.40 -1.46	- (2-3) - (7-29)	induced elimete
Florida	1.40	(/ 25)	induced climate
A2	0.81; 4.79	+ (4-16) + (24-96)	change.
B1	0.51; 0.97	+ (3–10) + (5–19)	
Cool roofs	-0.41	- (2-8)	1 S: Projected changes on
Green roofs	-0.21	- (1-4)	energy demand for greenhouse-
Green-albedo roofs	-0.46	- (2 -9)	energy demand for greenhouse-
Mid-Atlantic			gas-induced climate change.
A2	1.15; 6.52	+ (6–23); + (33–130)	5
B1	0.77; 1.54	+ (4–15); + (8–31)	
Cool roofs	-1.80	- (9 -36)	Table 2 Average 11A poor-surface
Green roofs	-1.19	- (6–24)	Table 2. Average JJA near-surface
Green–albedo roofs	-2.02	- (10 -40)	temperature difference for urban
Chicago/Detroit			and greenhouse gas-induced (mean
A2	1.13; 7.57	+ (6–23); + (38–151)	and greenhouse gas-induced (mean
B1	0.78; 1.45	+ (4–16); + (7–29)	ot 2079–2099 minus mean of 1990–
Cool roots	-1.37	- (7-27)	2010) climate change
Green roots	-0.85	- (4-17)	zoroj ciinate change.
Green-albedo roots	-1.49	- (/-30)	

CALIFORNIA	$\Delta T_{\text{URB}} [^{\circ}C]; \Delta T_{\text{GHG}} [^{\circ}C]$	ΔE_{URB} [%]; ΔE_{GHG} [%]
A2	0.48; 4.26	-(1-7); -(13-64)
B1	0.31; 0.37	- (1-5); - (1-6)
Cool Roofs	-0.90	+ (3-14)
Green Roofs	0.14	- (0-2)
Green-Albedo Roofs	-0.90	+ (3-14)
ARIZONA		
A2 Scenario	0.54; 4.64	- (2-8); - (14-70)
B1 Scenario	-0.01; 0.36	-(0); -(1-5)
Cool Roofs	-0.79	+ (2-12)
Green Roofs	0.10	- (0-2)
Green-Albedo Roofs	-0.84	+ (3-13)
TEXAS		
A2	0.79; 4.27	- (2-12); - (13-64)
B1	0.24; 0.86	- (1-4); - (3-13)
Cool Roofs	-1.14	+ (3-17)
Green Roofs	0.16	- (0-2)
Green-Albedo Roofs	-1.18	+ (4-18)
FLORIDA		
A2	0.66; 3.46	- (2-10); - (10-52)
B1	0.38; 0.21	- (1-6); - (1-3)
Cool Roofs	-1.05	+ (3-16)
Green Roofs	0.01	- (0)
Green-Albedo Roofs	-1.03	+ (3-15)
MidAtlantic		
A2	0.59; 5.12	- (2-9); - (15-77)
B1	0.17; 1.58	- (1-3); - (5-24)
Cool Roofs	-1.54	+ (5-23)
Green Roofs	0.27	- (1-4)
Green-Albedo Roofs	-1.56	+ (5-23)
Chicago/Detroit		
A2	0.62; 6.78	- (2-9); - (20-102)
B1	0.27; 2.01	- (1-4); - (6-30)
Cool Roofs	-0.67	+(2-10)
Green Roofs	0.59	- (2-9)
Green-Albedo Roofs	-0.63	+(3-9)

Table S3. AsTable 2 but forDecember-January-February(DJF).

California						
Adaptation Strategy	Deployment %	JJA: ΔT_{URB} [°C]; ΔE_{URB} [%]	DJF: ΔT_{URB} [°C]; ΔE_{URB} [%]			
Green Roofs	67%	-0.16; - (1-3)	0.09; - (0-1)			
Cool Roofs	47%	-0.68; - (3-14)	-0.42; + (1-6)			
Green-Albedo	44%	-0.73; - (4-15)	-0.40; + (1-6)			
		Arizona				
Adaptation Strategy	Deployment %	JJA: ΔT_{URB} [°C]; ΔE_{URB} [%]	DJF: ΔT_{URB} [°C]; ΔE_{URB} [%]			
Green Roofs	90%	-0.14; - (1-3)	0.09; - (0-1)			
Cool Roofs	66%	-0.31; - (2-6)	-0.52; + (2-8)			
Green-Albedo	57%	-0.46; - (2-9)	-0.48; +(1-7)			
Texas						
Adaptation Strategy	Deployment %	JJA: ΔT_{URB} [°C]; ΔE_{URB} [%]	DJF: $\Delta T_{\text{URB}} [^{\circ}C]; \Delta E_{\text{URB}} [\%]$			
Green Roofs	82%	-0.38; - (2-8)	0.13; - (0-2)			
Cool Roofs	54%	-0.67; - (3-13)	-0.62; + (2-9)			
Green-Albedo	50%	-0.73; - (4-15)	-0.59; + (2-9)			
Florida						
Adaptation Strategy	Deployment %	JJA: ΔT_{URB} [°C]; ΔE_{URB} [%]	DJF: ΔT_{URB} [°C]; ΔE_{URB} [%]			
Green Roofs	78%	-0.16; - (1-3)	0.01; - (0)			
Cool Roofs	66%	-0.27; - (1-5)	-0.69; + (2-10)			
Green-Albedo	62%	-0.29; - (1-6)	-0.64; + (2-10)			
Mid-Atlantic						
Adaptation Strategy	Deployment %	JJA: ΔT_{URB} [°C]; ΔE_{URB} [%]	DJF: ΔT_{URB} [°C]; ΔE_{URB} [%]			
Green Roofs	48%	-0.57; - (3-11)	0.13; - (0-2)			
Cool Roofs	37%	-0.67; - (3-13)	-0.57; + (2-9)			
Green-Albedo	34%	-0.69; - (3-14)	-0.53; + (2-8)			
Chicago/Detroit						
Adaptation Strategy	Deployment %	JJA: ΔT_{URB} [°C]; ΔE_{URB} [%]	DJF: ΔT_{URB} [°C]; ΔE_{URB} [%]			
Green Roofs	59%	-0.5; - (3-10)	0.35; - (1-5)			
Cool Roofs	47%	-0.64; - (3-13)	-0.31; + (1-5)			
Green-Albedo	45%	-0.67; - (3-13)	-0.28; + (1-4)			

Table S4. As Table 2 but with urban adaptation deployment to a value that offsets urban induced summertime warming.

5. Conclusions

- In the absence of any adaptive urban design, urban expansion across the United States imparts warming over large regional swaths of the country that is a significant fraction of anticipated temperature increases resulting from greenhouse gas-induced warming.
- Adapting to urban-induced climate change is geographically dependent, and the robust analysis that we present offers insights into optimal approaches and anticipated tradeoffs associated with varying expansion pathways.

Thank you !