Responses of heat stress to the climate warming from the perspective of temperature and humidity

Jiacan Yuan ${ }^{1,3}$
Michael I. Stein ${ }^{2}$, Robert E. Kopp ${ }^{3}$, Dawei Li ${ }^{3}, 4$

1. Department of Atmospheric and Oceanic Sciences, Fudan University, CN
2. Department of Statistics, University of Chicago, US
3. Department of Earth and Planetary Sciences, Rutgers University, US
4. Department of Geosciences, University of Massachusetts Amherst, US

Motivation

HEAT STRESS INJURIES
 HEAT RASH
 - Red raised rash
 - Impairs sweating and decreases effectiveness of sweating
 - Moist, clammy skin
 - Dilated pupils
 - Normal or subnormal
 Normal or sul temperature
 - Dizziness, confusion and/or
 nausea
 - Weak pulse
 - Rapid breathing
 HEAT CRAMPS
 - Muscle cramps, pain or spasms in the abdomen, arms or legs
 HEAT EXHAUSTION
 HEAT STROKE
 - Dry. red, hot skin
 - Pupils constricted
 - Very high body temperature
 - Dizziness, confusion and/or
 nausea
 - Pulse rapid
 - Unconciousness
 - Coma
 - Death

Motivation

Impact of extreme events during 2001-2010 compared with 1991-2000

Increase in surface air temperature (T)

Multi-model ensemble of global-mean surface air temperature deviating from 1986-2005 (The Climate Science Special Report Fig.1.4)

RCP8.5: 2081-2100

39-model average of surface air temperature in 2081-2100 deviating from 1986-2005 (IPCC AR5 Fig. 12.11)

Increase in extreme temperature

Humidity is another important contributor to heat stress

People feel hotter when relative humidity is higher even the temperature is the same

Low humidity

High humidity

In a rainforest or jungle

At the beach or near the ocean

Sweat evaporates into the air, which cools the body.

It's harder for sweat to evaporate
because the air is already so moist.
The body doesn'tcool down as
easily. That's why it feels hotter.

Over land, specific humidity increases while relative humidity (RH) decreases

2016-2035 relative to 1986-2005 under RCP4.5

What is the indication of climate warming to heat stress considering both T and RH?

(\%)

(\%)

IPCC AR5 (Fig. 11.14)

Outline

> Part I Emulate the evolving distribution of relative humidity conditional on daily maximum temperature in a warming climate
> Part II Responses of Wet-Bulb Globe Temperature to climate warming

Outline

> Part I Emulate the evolving distribution of relative humidity conditional on daily maximum temperature in a warming climate
> Part II Responses of Wet-Bulb Globe Temperature to climate warming

Common assumptions for evolving marginal distribution in a warming climate

Hansen et al. (2012)

Evolving marginal distributions in a real case

July in Chicago (CESM LENS RCP8.5)

Mean:	$26.90 ; 28.72 ;$	32.04	
STD:	$2.72 ;$	$2.90 ;$	3.29
Skewness:	$0.42 ;$	$0.62 ;$	0.81

| Mean: | $65.6 ; 63.49 ; 60.29$ |
| :--- | ---: | ---: |
| STD: | $15.72 ; 16.68 ; 17.97$ |
| Skewness: | $-0.16 ;-0.20 ;-0.15$ |

Evolving Joint Distributions between Tmax and Relative Humidity (RH)

New York City July

Evolving Joint Distributions between Tmax and Relative Humidity (RH)

$$
\text { Enthalpy }=\frac{\operatorname{Tmax} \times C_{p}}{}+\frac{R H \times \frac{e_{\text {sat }} \times 0.622}{P-e_{\text {sat }}} \times L}{\text { Sensible heat }} \frac{\text { Latent heat }}{}
$$

> NYC: New York City, humid temperate climate
$>\mathrm{CHI}$: Chicago, hot-summer humid continental climate
> PHX: Phoenix, hot-desert climate
> NOLA: New Orleans, humid subtropical climate

How to predict the evolving distribution of RH conditional on Tmax?

Quantile Regression

Multi-linear regression: $\quad \widehat{\boldsymbol{Y}}=\boldsymbol{X} \hat{\beta}$

Quantile regression:

$$
\widehat{\boldsymbol{Y}}_{\tau}=\boldsymbol{X} \hat{\boldsymbol{\beta}}_{\tau}
$$

Advantages of quantile regression :

- Without assuming any particular statistical form for the distribution
- Allows any changes in shape of distribution

Emulating the distribution of RH on Tmax through Quantile Regression

$$
\begin{equation*}
\widehat{R H}_{\tau}(\operatorname{Tmax})=\theta+\gamma\left(\operatorname{Tmax}-T_{0}\right)_{+}+\sum_{j=1}^{m} \eta_{j} K_{j}(\operatorname{Tmax}) \tag{1}
\end{equation*}
$$

Kink function
Cubic Spline function

$$
\left(\operatorname{Tmax}-T_{0}\right)_{+}= \begin{cases}\operatorname{Tmax}-T_{0}, & T \max \geq T_{0} \\ 0, & T \max <T_{0}\end{cases}
$$

Quantile regression solves the following minimization problem:

$$
\tau \sum_{i=1}^{n}\left(R H_{i}-\widehat{R H}_{\tau}\left(\operatorname{Tmax}_{i}\right)\right)_{+}+(1-\tau) \sum_{i=1}^{n}\left(\widehat{R H}_{\tau}\left(\operatorname{Tmax}_{i}\right)-R H_{i}\right)_{+}
$$

Lines: Estimated quantiles by the Quantile Regression Model (1)

Dots: raw data from CESM LENS

Tmax (C)

Model evaluation

Empirical inverse quantiles + cross validation of the RH data in a small Tmax interval (1 degree C)

99 quantiles from 0.01 to 0.99

the solid lines mark the 0.025 (lower line) and 0.975 (upper line) of the binomial distribution the counts should follow if the model is accurate

Model evaluation

NYC 31-32 C bin (1990-2005)

NYC 29-30 C bin (2026-2035)

NYC $30-31 \mathrm{C}$ bin (2026-2035)

NYC 31-32 C bin (2026-2035)

NYC 32-33 C bin (2026-2035)

NYC 32-33 C bin (2071-2080)

NYC 33-34 C bin (2071-2080)

NYC 34-35 C bin (2071-2080)

NYC 35-36 C bin (2071-2080)

At fixed temperature (e.g. 95 ${ }^{\text {th }}$ quantile in 1990-2005)

Increases in RH will amplify the heat stress in a future day when climate gets warmer.

Heat Index: a metric measures intensity of heat stress considering both temperature and relative humidity (Rothfusz, 1990)

At fixed quantile of temperature (e.g. $95^{\text {th }}$ quantile in each period)

In a warming climate, despite a modest decrease in RH, heat stress will tend to increase faster than temperature alone would indicate

Outline

$>$ Part I Emulate the evolving distribution of relative humidity conditional on daily maximum temperature in a warming climate
> Part II Responses of Wet-Bulb Globe Temperature to climate warming

Wet bulb globe temperature

1. It is measurable

 $\begin{array}{cc}\mathbf{T}_{\mathbf{g}} & \mathbf{T}_{\mathrm{nw}} \\ \text { Globe temperature } \\ \text { (nature) }\end{array}$ wet-bulb temperature

2. Has been widely used in health guidelines

Table 1. ISO 7243: WBGT reference values

Metabolic rate $\left(\mathrm{Wm}^{-2}\right)$	WBGT reference value	
	Acclimatized $\left({ }^{\circ} \mathrm{C}\right)$	Not acclimatized $\left({ }^{\circ} \mathrm{C}\right)$
Resting $M<65$	33	32
$65<M<130$	30	29
$130<\mathrm{M}<200 \sim$ walking	28	26
$200<M<260$	$25(26)^{*}$	$22(23)^{*}$
$M>260$	$23(25)^{*}$	$18(20)^{*}$

The values given have been established allowing for a maximum rectal temperature of $38^{\circ} \mathrm{C}$ for the persons concerned.
*: Figures in brackets refer to sensible air movement.

Wet bulb globe temperature

Wet-bulb globe temperature (WBGT):

$$
W B G T=0.7 \times T_{w}+0.2 T_{g}+0.1 \times T_{a}
$$

Simplified WBGT (appropriate for shaded conditions):

$$
W B G T^{*} \approx 0.7 \times T_{w}+0.3 \times T_{a}
$$

Wet bulb temperature

$>$ Empirical relationship based on psychrometric chat (Stull 2011) ~ limited by ranges of observations
$>$ Wet bulb potential temperature (DAVIES-JONES 2008) ~ designed for severe weather forecast
$>$ Isobaric wet bulb temperature (Li et al. 2020) ~ the cooling of body through perspiration

$$
C_{p a} T_{w}+L_{v} q_{s}\left(T_{w}\right)=C_{p a} T+L_{v} q
$$

Data and methods

What is the historical heat stress like, measured by WBGT?

United States, 1995-07-14

South Asia, 2015-05-27

Europe, 2003-08-12

China, 2017-07-24

Russia, 2010-08-06

Northeast Asia, 2018-07-22

What is the implication for heat stress, measured by WBGT, under the different level of global warming?

Changes in Frequency of Exceedance with $\triangle G M S T$

$31^{\circ} \mathrm{C} \sim$ the peak of 1995 Chicago Heatwave
$33^{\circ} \mathrm{C} \sim$ humans maintain a normal core body temperature at resting
$35^{\circ} \mathrm{C} \sim$ maximum value calculated from historical observations

Changes in Frequency of Exceedance with $\Delta G M S T$ (Selected Sites)

Changes in Frequency of Exceedance with $\triangle G M S T$ (Shanghai)

Frequency of extreme heat days with a WBGT
$\Delta \mathrm{GMST}\left({ }^{\circ} \mathrm{C}\right)$ greater than $33^{\circ} \mathrm{C}$

l
$1 /(70$ years $)$
$1 /(9$ years $)$
$1 /(2$ years $)$
$1.6 /$ year
$4.1 /$ year
$7.3 /$ year
$12.4 /$ year

- 0.0
- 1.0

○ 1.5

- 2.0

○ 2.5

- 3.0
- 3.5
- 4.0

○ 4.5

World Population Exposure to Extreme WBGT

Key Takeaways

$>$ Humidity is an important contributor to the impact of heat stress:
\Rightarrow At fixed temperature, increases in RH will amplify the heat stress in a future day
> In a warming climate, despite a modest decrease in RH , heat stress will tend to increase faster than temperature alone would indicate
> The frequency of heat-humidity extremes, measured using WBGT, will increase dramatically in response to global warming
$>$ The benefit of limiting $\triangle \mathrm{GMST}$ to $1.5^{\circ} \mathrm{C}$ rather than $2^{\circ} \mathrm{C}$ is evident in reducing world population exposure to life threatening heat stress.

Risk Interconnectivity and Governance on WEather／Climate Extremes Impact and Public HEalth极端天气／气候事件与人体健康风险互联与治理国际卓越中心

Recruitment

Position：Ph．D candidate，Postdoc
Research field：impact of weather／climate extremes on human health

Contact：Jiacan Yuan（袁嘉灿）jcyuan＠fudan．edu．cn

Thank You!

- J. Yuan*, M. I. Stein, and R. E. Kopp (2020). The evolving distribution of relative humidity conditional upon daily maximum temperature. Journal of Geophysical ResearchAtmospheres. https://doi.org/10.1029/2019JD032100
- D. Li*, J. Yuan*, and R. E. Kopp (2020). Escalating Global Exposure to Compound HeatHumidity Extremes with Warming. Environmental Research Letters.
https://doi.org/10.1088/1748-9326/ab7d04

Convert sea level pressure to surface pressure

$$
\begin{array}{cc}
P=\rho R T \\
d P=-\rho g d z & (1) \\
d T=\Gamma d z & d P=-\frac{g}{R T} P d z \\
(1)+(2): & d \ln P=-\frac{g}{R \Gamma} \times \frac{d T}{T}=-\frac{g}{R \Gamma} d \ln T \tag{4}\\
\ln \left(\frac{P s}{P s l}\right)=-\frac{g}{R \Gamma} \ln \left(\frac{T s}{T s l}\right) \\
P s=P s l \times\left(1-\left(\frac{\Gamma z}{T s}\right)\right)^{\frac{g}{R \Gamma}}
\end{array}
$$

