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IntroOngoing Urbanization

Source: http://www.museumofthecity.org/project/urban-air-pollution-in-chinese-cities/
https://agnux.wordpress.com/2009/06/22/ecofasa-turns-waste-to-biodiesel-using-bacteria/
http://environment.nationalgeographic.com/environment/photos/urban-threats/
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IntroUrban Heat Island (UHI)

http://environment.nationalgeographic.com/environment/photos/urban-threats/
http://www.mdpi.com/2071-1050/8/8/706

 From 1979-2003, excessive heat exposure causes more deaths than hurricanes, 
lightning, tornadoes, floods, and earthquakes in U.S. (Center for Disease Control and 
Prevention, 2006)
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IntroWater-Energy-Climate Feedback
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Intro

Urban heat island

 Large heat storage in 
engineering materials

 Reduced evaporative 
cooling due to small 
vegetative cover

 Built-up landscape traps 
radiation and inhibits 
advective cooling 

 Waste heat released from 
anthropogenic activities

Smart cities

 Novel engineering 
material

 Urban green 
landscape

 Resilient urban form 
design

 Green and renewable 
energy, efficient 
energy use

Technology

Policy

Urban Heat Mitigation
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IntroResearch Question

How to manage the water-energy-climate 
nexus to develop smart cities under global 

change?

 What needs to be done?

Investigate the impact of potential adaptation/mitigation technology 
and policy on complex urban water-energy-climate nexus

 How? A synthesis of experimental and numerical approaches

Scale issue Complex processes
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IntroSensing Engineering Materials

Down to Earth
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San Diego buff
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Omidvar, Song, Yang et al.  Water Resour. Res. 2018
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IntroSensing the Campus

Wireless Sensor Network
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IntroSensing the City

Mobile Urban Sensing Technologies (MUST)
Led by Maider Llaguno-Munitxa
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IntroHeterogeneous Urban Environment

https://www.nasa.gov/centers/goddard/news/topstory/2005/nyc_heatisland.html

Spatiotemporal temperature 
variability
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IntroSensing the City

How many stations (mobile/fixed) do we need? 

New York City

Spatial

42880 grids (500 m x 500 m)

Temporal

1440 time (30-min interval)

61,747,200
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IntroMonthly Mean Temperature
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IntroSensor Network Design

Yang and Bou-Zeid, Environ. Res. Lett. 2019

Measurement network A:
randomly distributed fixed (RDF) 
sensors assuming no prior 
knowledge of the urban land use
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IntroSensor Network Design

Yang and Bou-Zeid, Environ. Res. Lett. 2019

Measurement network B:
evenly distributed fixed (EDF) 
sensors with equal measurements 
over each bin of impervious 
fractions
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IntroSensor Network Design

Yang and Bou-Zeid, Environ. Res. Lett. 2019

Measurement network D:
mobile measurement network 
(MMN) with sensors moving 
randomly within the studied area
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IntroSensing the City

How about extreme temperatures?

Optimal sensing strategy by combing mobile 
and fixed stations

Yang and Bou-Zeid Environ. Res. Lett. 2019
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IntroUrban Canopy Model
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 Urban vegetation
 Hydrological modeling
 Sub-surface heterogeneity

Urban surface energy balance:

Rn is the net radiation, Q is the anthropogenic heat, H is the sensible heat flux, LE

is the latent heat flux, G is the storage heat flux

𝑅𝑛 + 𝑄 = 𝐻 + 𝐿𝐸 + 𝐺

Kusaka et al. Boundary-Layer Meteorol. 2001
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IntroUrban Hydrological Modeling

 Outdoor irrigation

 Anthropogenic latent heat

 Oasis effect

 Evaporation over

engineering materials 

Current modeling system needs to be enhanced via a better representation of 

urban hydrological processes:

Yang et al. Boundary-layer. Meteorol. 2015 
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IntroIn-situ Data Collection

Phoenix 22-m tower
(Chow et al. 2014)

Vancouver 29-m tower
(Crawford et al. 2013)

Montreal 25-m tower
(Leroyer et al. 2011)

Beijing 325-m tower
(Song and Wang 2012)

Urban canopy parameters for each site is estimated based on field 
measurements and remote sensing technique.
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IntroModel Evaluation at 4 Cities
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Yang et al. Boundary-layer. Meteorol. 2015 
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IntroBuilt Urban Jungle

Source: http://www.scmp.com/magazines/post-magazine/short-reads/article/2059543/drone-photos-hong-
kong-andy-yeungs-unique
https://www.phoenix.gov/waterservicessite/Documents/Landscape%20Watering%20Guidelines.pdf

Paved surfaces, including roads, parking areas and sidewalks, covers about 36-
45% of urban surfaces for a variety of metropolitan areas (Gray & Finster, 2009)
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IntroReflective Materials
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Source: http://newscenter.lbl.gov/2011/11/03/cool-roofs-really-can-be-cool/
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IntroReflective Materials

road

Building height = street width

Yang et al. Build. Environ. 2016 
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IntroImpact of Material Thermal Property
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IntroNovel Engineering Materials

Thermochromic material

Fabiani, Pisello, Bou-Zeid, Yang et al. Appl. Energy 2019 
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IntroUrban Green Landscape

Wang, Zhao, Yang and Song Appl. Energy 2016 
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Intro“Smart” Irrigation Schemes

 Daily constant: based on irrigation practice in Phoenix (8 pm local time)

 Soil-moisture-controlled: meet plant need (wilting point ~ 0.24)

 Soil-temperature-controlled: meet threshold temperature of 22 oC, but 
maintaining residual soil moisture of 0.10

How can we better design outdoor irrigation for a desert city?
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Intro“Smart” Irrigation Schemes

Yang and Wang, 2015 Energy Build. 
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IntroEnergy-Water Tradeoff

Is there an optimal temperature that can 
maximize the combined saving of energy 

and water resources?

Activating top-soil temperature (
o
C)
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The activating soil temperature 
needs to be carefully determined 
in order to achieve the optimal 
irrigation scheme

Yang and Wang, 2015 Energy Build. 
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IntroCoupled Atmosphere-Urban Modeling

Upscaling the neighbourhood-scale results brings uncertainty：

 Spatial heterogeneity of land surfaces

 Lack of land-atmosphere interactions 

Urban Canopy 
Model

Land Surface Model

Weather Research and 
Forecasting Model
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IntroPlanning for a Growing Desert City

Low Water-use Xeric neighbor

High Water-use Mesic neighbor

Water 
stress

Thermal
comfort

(Golden, 2004)
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IntroUrban Policy Dilemma

Source: https://www.glendaleaz.com/waterconservation/landscaperebates.cfm
http://www.mesaaz.gov/residents/water-conservation/residential-grass-to-xeriscape-rebate
http://www.chandleraz.gov/default.aspx?pageid=746
http://www.tempe.gov/city-hall/public-works/water/water-conservation
http://www.scottsdaleaz.gov/water/rebates
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IntroHigh-resolution Weather Simulation

Yang and Wang Landscape Urban Plan. 2017

Water-saving city Fully-greening city
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IntroSocial-Environmental Tradeoff 
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Yang and Wang Landscape Urban Plan. 2017

Mean annual water consumption about 
75 m3 per person (Gober and Kirkwood 
2010)

1.61 × 108 (m3) / 75 (m3/person) = 

2.15 × 106 person 

Projected population growth 2.62 million 
by 2050 in the medium series (ADOA 
2015)

A fully−greening city consumes 1.61 × 108 m3

more water during the summer 



34/47

IntroGreen Roofs in Sustainability Blueprint

Tokyo, Japan: Private buildings larger than 1000 m2 and public buildings larger 

than 250 m2 required to have 20% of rooftop greened

Basel, Switzerland: green roofs mandated on all new buildings with flat roofs 

and for roofs over 500 m2

Portland, Oregon: all new city-owned facilities include a green roof with 70% 

coverage 

Can cities mitigate heat islands by their 
local plans and efforts?
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IntroMulti-level Mitigation Plans

Local plan City-scale plan Regional plan

Chicago

Los Angeles

Miami

New York City

Phoenix

Pittsburgh

25% green roof coverage over buildings



36/47

IntroRegional Cooling by Green Roofs

Local plan City-scale plan Regional plan

New York City

Yang and Bou-Zeid Landscape Urban Plan. 2019
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IntroRegional Cooling by Green Roofs

Local plan City-scale plan Regional plan

Chicago

Yang and Bou-Zeid Landscape Urban Plan. 2019
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IntroScale Dependence of Cooling Benefit 

 Cooling benefit of green roofs 

increases non-linearly with the 

intervention area

 The shape of metropolitan 

areas and its geoclimatic

setting control the scaling
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IntroUHI under cold waves

Source: http://www.c3headlines.com/global-warming-urban-heat-island-bias/
https://www.dnainfo.com/chicago/20150109/downtown/history-of-winter-chicago-it-could-be-worse-definitely-was

To what extent will the UHI intensify or weaken under 
anomalously low regional temperatures?

2019 United States cold wave: Temperatures below −30.0 °C in the midwest of 
the United States during late January 

2017 European cold wave: The lowest temperature was −45.4 °C in Central and 
East Europe on January 5, 93 people across Europe died

2016 East Asia cold wave: Caused over 100 known deaths across East 
Asia, South Asia and Southeast Asia.
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IntroEarly 2014 North American cold wave

Urban heat islands intensified during daytime (0.65 ± 0.34 oC, mean ±
standard deviation among cities), and even more noticeably during night-
time (1.32 ± 0.78 oC)

Daytime

Night-time

UHI = Turb – Trul

Yang and Bou-Zeid 2018, J. Appl. Meteorol. Clim. 
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IntroTemporal evolution of UHI

 WRF simulation is able to 

reproduce the 

temperature variation 

across the cold wave 

event

 Intensification of UHI 

during the cold wave 

correlates weakly with 

incoming solar radiation

Yang and Bou-Zeid 2018, J. Appl. Meteorol. Clim. 
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IntroMechanism of intensified night-time UHI

Night-time surge in UHI is controlled by the heat release from urban fabric 
(engineering materials as “thermal battery”) 

Heat storage

Heat release

Yang and Bou-Zeid 2018, J. Appl. Meteorol. Clim. 
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IntroClimate change and human health

Gasparrini et al. 2015, The Lancet

Implicit assumption: temporal variation of spatially aggregated 
temperature can pick up the risk signal
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IntroUS residents’ exposure to extreme heat and cold

 Worker commute data from the 2006-2010 Census Transportation Planning Products 
(CTPP) (https://ctpp.transportation.org/)

 16 major United States metropolitan areas

 Three major heat waves (Jul 13 – Aug 29 in 2006, Jul 11 – Aug 10 in 2011, and Jun 18 –
Jul 20 in 2012) and one cold wave (Jan 1 – Feb 1 in 2014)

https://ctpp.transportation.org/
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IntroTemperature anomaly under extreme weather

 Cold wave lowers the area-weighted mean 2-m air temperature by 11.5 ± 3.1 oC

 Anomaly under heat waves (3.7 ± 1.5 oC) is much smaller than the cold anomaly
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IntroImpact of population dynamics

 Population dynamics lessen the exposure of urban residents to extreme cold by 0.4 
± 0.8 oC, but substantially increased the exposure to heat waves 2.0 ± 0.8 oC (more 
than half of the heat wave hazard 3.7 ± 1.5 oC)
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IntroConclusions

 Challenges posed to the Water-Energy-Climate nexus in the urban environment 
could be managed through strategic urban planning and policy

 The environmental benefits of mitigation strategies exhibit strong variations with 
geographic and climatic conditions, and are subject to change with the scale

Experimentation should be prompted at a case-by-case basis to test the overall 
value of individual measures for developing smart cities in different regions

Building scale
(~10 – 100 m)

Neighborhood scale
(~100 – 1000 m)

City and Regional scale
(~1000 – 10000 m)



Thank you!


