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¢ Background and Motivation



Ongoing Urbanization

150 Years of Global Urbanization N e -

This shift in demographics raises many important n Relocati ds
questions and challenges facing the future of our world, elocation trends
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Industrialization of
western China will raise
incomes but could
pollute major rivers

Source: http://www. museumoftheaty org/project/urban-air-pollution-in-chinese-cities/
https://agnux.wordpress.com/2009/06/22/ecofasa-turns-waste-to-biodiesel-using-bacteria/
http://environment.nationalgeographic.com/environment/photos/urban-threats/
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Urban Heat Island (UHI)
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s From 1979-2003, excessive heat exposure causes more deaths than hurricanes,

lightning, tornadoes, floods, and earthquakes in U.S. (Center for Disease Control and
Prevention, 2006)

http://environment.nationalgeographic.com/environment/photos/urban-threats/ 2/47
http://www.mdpi.com/2071-1050/8/8/706



Water-Energy-Climate Feedback
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Urban Heat Mitigation

Technology

Urban heat island
Policy

» Large heat storage in
engineering materials

> g

» Reduced evaporative >

cooling due to small E—)
> g

vegetative cover

» Built-up landscape traps
radiation and inhibits
advective cooling

» Waste heat released from >
anthropogenic activities —

Smart cities

Novel engineering
material

Urban green
landscape

Resilient urban form
design

Green and renewable
energy, efficient
energy use
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Research Question

How to manage the water-energy-climate
nexus to develop smart cities under global
change?

» What needs to be done?

Investigate the impact of potential adaptation/mitigation technology
and policy on complex urban water-energy-climate nexus

» How? A synthesis of experimental and numerical approaches

Scale issue Complex processes
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s Experimental Investigation



Sensing Engineering Materials
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Sensing the Campus

Wireless Sensor Network
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Sensing the City

Mobile Urban Sensing Technologies (MUST)

Led by Maider Llaguno-Munitxa
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Heterogeneous Urban Environment
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Sensing the City

How many stations (mobile/fixed) do we need?

Spatial

42880 grids (500 m x 500 m)

Temporal

1440 time (30-min interval)

61,747,200

New York City
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Monthly Mean Temperature
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Sensor Network Design

Measurement network A:

randomly distributed fixed (RDF) 4
sensors assuming no prior —12
knowledge of the urban land use - 3 s
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Yang and Bou-Zeid, Environ. Res. Lett. 2019
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Sensor Network Design

Measurement network B:

evenly distributed fixed (EDF) 4
sensors with equal measurements
over each bin of impervious 37
fractions >
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Sensor Network Design

Measurement network D:

mobile measurement network 4
(MMN) with sensors moving
randomly within the studied area S 37
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Yang and Bou-Zeid, Environ. Res. Lett. 2019
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Sensing the City

How about extreme temperatures?
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Yang and Bou-Zeid Environ. Res. Lett. 2019

Optimal sensing strategy by combing mobile
and fixed stations
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¢ Urban Canopy Model



Urban Canopy Model

Urban surface energy balance: R _+Q =H +@+ G

R, is the net radiation, Q is the anthropogenic heat, H is the sensible heat flux, LE
is the latent heat flux, G is the storage heat flux

=  Urban vegetation

|7 / * Hydrological modeling
Z /GR L =  Sub-surface heterogeneity

soil heat storage Ge v Ts

w r
Kusaka et al. Boundary-Layer Meteorol. 2001
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Urban Hydrological Modeling

Current modeling system needs to be enhanced via a better representation of
urban hydrological processes:

¢ Qutdoor irrigation

** Anthropogenic latent heat

Roof
% Qasis effect ), Shading

*¢* Evaporation over

engineering materials § s

o,
- £y

__________________________

Heat conduction

Yang et al. Boundary-layer. Meteorol. 2015
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In-situ Data Collection

Vancouver 29-m tower
(Crawford et al. 2013)

Beijing 325-m tower
(Song and Wang 2012)

Montreal 25-m tower
(Leroyer et al. 2011)

Phoenix 22-m tower
(Chow et al. 2014)

Urban canopy parameters for each site is estimated based on field
measurements and remote sensing technique.
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Model Evaluation at 4 Cities

Dissipative heat flux (Wm™)
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.

** Neighborhood Scale

*¢* Smart City Development



Built Urban Jungle

Paved surfaces, including roads, parking areas and sidewalks, covers about 36-
45% of urban surfaces for a variety of metropolitan areas (Gray & Finster, 2009)

Source: http://www.scmp.com/magazines/post-magazine/short-reads/article/2059543/drone-photos-hong-
kong-andy-yeungs-unique 20/47
https://www.phoenix.gov/waterservicessite/Documents/Landscape%20Watering%20Guidelines.pdf



Reflective Materials
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Reflective Materials

70¢
Seof T 4Tl
g i e a=05
8t ——— a=07
5 50+
o oL —_— —
= i
|5 i
S a0f
2t B
e L
5 | road
3530; Building height = street width
I P B B SR B
200 4 8 12 16 20 24

Local time (hours)

Yang et al. Build. Environ. 2016

22/47



Impact of Material Thermal Property
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Novel Engineering Materials

Dark roof (a=0.15) = = = Thermochromic roof (a=0.15-0.55) = Cool roof (a=0.55)
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Urban Green Landscape

solar radiation conduction

B,

radiative
trapping/shading

heat storage

Vegetation fraction f,,
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Wang, Zhao, Yang and Song Appl. Energy 2016
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“Smart” Irrigation Schemes
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How can we better design outdoor irrigation for a desert city?

= Daily constant: based on irrigation practice in Phoenix (8 pm local time)
= Soil-moisture-controlled: meet plant need (wilting point ~ 0.24)

= Soil-temperature-controlled: meet threshold temperature of 22 °C, but
maintaining residual soil moisture of 0.10
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“Smart” Irrigation Schemes
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Energy-Water Tradeoff

Is there an optimal temperature that can
maximize the combined saving of energy
and water resources?
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Yang and Wang, 2015 Energy Build.
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*¢* Smart City Development



Coupled Atmosphere-Urban Modeling

Upscaling the neighbourhood-scale results brings uncertainty:
= Spatial heterogeneity of land surfaces

= Lack of land-atmosphere interactions

Free atmosphere

Weather Research and
Forecasting Model

_____

Urban canopy layer

Land Surface Model
Urban Canopy
Model

Shading VY]] [ —
| h
|

Heat conduction 29/47



Planning for a Growing Desert City
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Urban Policy Dilemma

Transiate | =-Nodfcations | Job Openings | Contact Us
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Prevention than 600 million gallons of water a year by 2020, 1
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R B advantage of these programs, you will help sustain Tempe's water supply now and
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+ Mideo Library.
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tion
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- Home Page the City, and transforming an additional 150 miles of canals into
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L

Eligibility requirements

3. Reducing the urban heat island effect through green infrastructure
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==

Source: https://www.glendaleaz.com/waterconservation/landscaperebates.cfm
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http://www.chandleraz.gov/default.aspx?pageid=746
http://www.tempe.gov/city-hall/public-works/water/water-conservation
http://www.scottsdaleaz.gov/water/rebates
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High-resolution Weather Simulation

43N Legend
- Open water
40N - Developed, high intensity
37N I Dcveloped, medium intensity
- Developed, low intensity
34N Shrub/Scrub
31N - Deciduous forest
- Evergreen forest
28N Pasture/Hay
25N - Woody wetlands
- Cultivated Crops
22N Unconsolidated shore
126W 121W 116W
Yang and Wang Landscape Urban Plan. 2017
Water-saving city Fully-greening city
, 3 Ty(°C)
34.5N A 34.5N )
34.2N 4 34.2N 1
33.9N 4 33.9N 1
33.6N 1 33.6N A
33.3N A 33.3N A
0.3
33N 1 33N
32.7N1 ' 32.7N
113.1W 11250 111.9W 1113w 1107w 113.AW 11250 111.9W  111.3W 1107

32/47



Social-Environmental Tradeoff
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Yang and Wang Landscape Urban Plan. 2017
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Green Roofs in Sustainability Blueprint

Tokyo, Japan: Private buildings larger than 1000 m? and public buildings larger

than 250 m? required to have 20% of rooftop greened
Basel, Switzerland: green roofs mandated on all new buildings with flat roofs

and for roofs over 500 m?
Portland, Oregon: all new city-owned facilities include a green roof with 70%

coverage

Can cities mitigate heat islands by their
local plans and efforts?
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Multi-level Mitigation Plans

Local plan City-scale plan

25% green roof coverage over buildings
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Regional Cooling by

Green Roofs
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Regional Cooling by Green Roofs

Chicago
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Scale Dependence of Cooling Benefit
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Yang and Bou-Zeid Landscape Urban Plan. 2019
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UHI under cold waves

2019 United States cold wave: Temperatures below -30.0 °C in the midwest of
the United States during late January

2017 European cold wave: The lowest temperature was -45.4 °Cin Central and
East Europe on January 5, 93 people across Europe died

2016 East Asia cold wave: Caused over 100 known deaths across East
Asia, South Asia and Southeast Asia.

To what extent will the UHI intensify or weaken under
anomalously low regional temperatures?
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Early 2014 North American cold wave

] ] 6 m Pre-cold wave m Cold wave Post-cold wave
Yang and Bou-Zeid 2018, J. Appl. Meteorol. Clim. S s
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Urban heat islands intensified during daytime (0.65 + 0.34 °C, mean *

standard deviation among cities), and even more noticeably during night-
time (1.32 + 0.78 °C)
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Temporal evolution of UHI

Cold Wave
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*¢* WRF simulation is able to
reproduce the
temperature variation
across the cold wave

event

** Intensification of UHI
during the cold wave
correlates weakly with

incoming solar radiation
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Mechanism of intensified night-time UHI
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Yang and Bou-Zeid 2018, J. Appl. Meteorol. Clim.

Night-time surge in UHI is controlled by the heat release from urban fabric
(engineering materials as “thermal battery”)
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Climate change and human health
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Implicit assumption: temporal variation of spatially aggregated

temperature can pick up the risk signal
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Gasparrini et al. 2015, The Lancet
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US residents’ exposure to extreme heat and cold

EREEOOEDEEN
88338588

Chicago

Pop (1000)

Selected Metropolitan Areas
Weather Forecast Zones
Selected Domains

» Worker commute data from the 2006-2010 Census Transportation Planning Products
(CTPP) (https://ctpp.transportation.org/)

» 16 major United States metropolitan areas

» Three major heat waves (Jul 13 — Aug 29 in 2006, Jul 11 — Aug 10 in 2011, and Jun 18 —
Jul 20in 2012) and one cold wave (Jan 1 —Feb 1 in 2014)
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https://ctpp.transportation.org/

Temperature anomaly under extreme weather
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» Cold wave lowers the area-weighted mean 2-m air temperature by 11.5 = 3.1 °C

» Anomaly under heat waves (3.7 £ 1.5 °C) is much smaller than the cold anomaly
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Impact of population dynamics
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» Population dynamics lessen the exposure of urban residents to extreme cold by 0.4
+ 0.8 °C, but substantially increased the exposure to heat waves 2.0 + 0.8 °C (more
than half of the heat wave hazard 3.7 + 1.5 °C)
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** Future Work



Conclusions

0

* Challenges posed to the Water-Energy-Climate nexus in the urban environment

could be managed through strategic urban planning and policy

0

* The environmental benefits of mitigation strategies exhibit strong variations with

geographic and climatic conditions, and are subject to change with the scale

turbulent s dire
mmng \J

s t
\s

Building scale
(~10-100 m)

radiative trapping  heat storage 4)24)

Neighborhood scale
(~100 — 1000 m)

City and Regional scale
(~1000 — 10000 m)

Experimentation should be prompted at a case-by-case basis to test the overall
value of individual measures for developing smart cities in different regions
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