## **Published Work**

Yan, Y., Xu, Y. & Yue, S. A high-spatial-resolution dataset of human thermal stress indices over South and East Asia. *Scientific Data* **8**, 229 (2021). Available at: <u>https://www.nature.com/articles/s41597-021-01010-w</u>



- Yechao Yan
  - Department of GIS, School of Geographical Sciences, NUIST
- Yangyang Xu
  - Department of ATMO, College of Geosciences, Texas A&M University
- Shuping Yue
  - Department of GIS, School of Geographical Sciences, NUIST

# Outline

- 1. Background
- 2. Methods
- 3. Data Records
- 4. Technical Validation
- 5. Usage Notes
- 6. Code availability

# Background

## Why do we need thermal-stress indices?

#### Besides air temperature, other factors also matter

- Air temperature
- Air humidity
- Wind speed
- Radiations





Wet Bulb Globe Temperature (WBGT)

## Why do we need thermal-stress indices?

Human-thermal-stress indices

- Empirical indices
  - Empirical models
  - E.g., NET, HI, Humidex, WBGT, WBT, WCT, ESI, etc.

#### Rational indices

- Models based on human heat balance considerations
- E.g., UTCI, PET, SET, etc.

# **Existing Work**

#### • Di Napoli, C., Barnard, C. & Prudhomme, C., et al.

- ERA5-HEAT: a global gridded historical dataset of human thermal comfort indices from climate reanalysis. Geosci. Data J. <a href="https://doi.org/10.1002/gdj3.102">https://doi.org/10.1002/gdj3.102</a> (2020)
- Data source: ERA5
- 0.25°×0.25°, hourly values (UTCI, MRT)

#### • Mistry, M.N.

- A high spatiotemporal resolution global gridded dataset of historical human discomfort indices. Atmosphere <u>https://doi.org/10.3390/atmos11080835</u> (2020)
- Data source: GLDAS
- 0.25°×0.25°, daily values (eight empirical indices)

# Highlights

# Higher spatial resolution

 $- 0.1^{\circ} \times 0.1^{\circ}$ 

#### More indices

- 12 indices (rational and empirical)
- UTCI and its variants (indoor, outdoor shaded & outdoor unshaded )

### Comprehensive validation

based on thousands of weather stations

#### Open-source code

- freely available python source code

# **Methods**

#### Schematic of the workflow



### What is UTCI?

 The <u>Universal Thermal Climate Index</u> is defined as an equivalent ambient temperature (in °C) of a reference environment that produces the same physiological response of a typical person as in the actual environment.



### What is UTCI?

Approximated by:

$$UTCI = T_a + f(T_a, V_a, e, MRT - T_a)$$

A 6th-order polynomial regression function given by Bröde et al. (2012)

#### MRT for outdoor environment (Weihs et al., 2012)

$$MRT = \left\{ \frac{1}{\sigma} \left[ \frac{\alpha_k}{\varepsilon_p} (f_p \cdot I_{sw} + f_a \cdot D_{sw} + f_a \cdot R_{sw}) + f_a \cdot (D_{lw} + U_{lw}) \right] \right\}^{0.25} - 273.5$$

### What is UTCI?

#### Projected area factor $(f_{\rho})$

$$f_p = 0.308 \cdot \cos\left\{ \left(\frac{\pi}{2} - \theta\right) \cdot \left[1 - \frac{\left(90 - \frac{180}{\pi}\theta\right)^2}{48402}\right] \right\}$$

#### Solar zenith angle ( $\theta$ , in radians)

 $\cos\theta = \sin\delta\sin\varphi + \cos\delta\cos\varphi\cos h$ 

• Apparent Temperature (AT)

$$AT = T_a + 0.33 \times e - 0.7V_a - 4$$

• Environment Stress Index (ESI)

$$ESI = 0.63T - 0.03RH + 0.002SR + 0.0054 \times T \times RH - \frac{0.073}{0.1 + SR}$$

• Humidex

$$Humidex = T_a + 0.5555 \times (e - 10)$$

• Heat Index (HI)

$$\begin{split} HI &= -42.379 + 2.04901523 \times T_a + 10.14333127 \times RH \\ &- 0.22475541 \times T_a \times RH - 0.00683783 \times T_a^2 - 0.05481717 \times RH^2 \\ &+ 0.00122874 \times T_a^2 \times RH + 0.00085282 \times T_a \times RH^2 \\ &- 0.00000199 \times T_a^2 \times RH^2 \end{split}$$

Note: Adjustment should be made in case of much lower or higher RH. For more information, please go to NOAA's website or see our article.

• Wet Bulb Temperature (WBT)

 $WBT = T_a \times \operatorname{atan}[0.151977(RH + 8.313659)^{0.5}] + \operatorname{atan}(T_a + RH) - \operatorname{atan}(RH - 1.676331) + 0.00391838(RH)^{1.5} \operatorname{atan}(0.023101 \times RH) - 4.686035$ 

• Wet-Bulb Globe Temperature (WBGT)

Original form:

$$WBGT = 0.7 \times T_w + 0.2 \times T_g + 0.1 \times T_d$$

Simplified equation:

$$WBGT = 0.567 \times T_a + 0.393 \times e + 3.94$$

• Wind Chill Temperature (WCT)

 $WCT = 13.12 + 0.6215 \times T_a - 11.37 \times V_a^{0.16} + 0.3965 \times T_a \times V_a^{0.16}$ 

#### • Net Effective Temperature (NET)



Note:  $V_a$  is the wind speed (m/s) at a height of 1.2 m.

# **Data Records**

## **Data Records**

| Title                      | High-spatial-resolution Thermal-stress Indices over South and East Asia (HiTiSEA) |
|----------------------------|-----------------------------------------------------------------------------------|
| Data type                  | Gridded                                                                           |
| Projection                 | Regular latitude-longitude grid                                                   |
| Horizontal coverage        | South and East Asia (65°E–155°E; 3°N–58°N)                                        |
| Horizontal resolution      | <b>0.1° x 0.1°</b>                                                                |
| Vertical resolution        | Surface level                                                                     |
| Temporal coverage          | 1981-01-03 to 2019-12-31                                                          |
| <b>Temporal resolution</b> | Daily (mean, maximum and minimum)                                                 |
| File format                | NetCDF                                                                            |
| NoData Value               | -32767                                                                            |
| Name convention            | HiTiSEA_YYYY-mm-dd.nc                                                             |

Total volume: 450 GB

Daily NetCDF files are archived by year and compressed into tar.gz files to save storage space.

# **Data Records**

#### Table 1. Thermal indices and their input variables

| Thermal Indices     | Full Name of the Indices        | Air Temperature | Air Humidity | Wind Speed     | Radiation |
|---------------------|---------------------------------|-----------------|--------------|----------------|-----------|
| UTCI                | universal thermal climate index | T <sub>a</sub>  | е            | V <sub>a</sub> | R         |
| indoor UTCI         | UTCI for indoor environment     | T <sub>a</sub>  | е            |                |           |
| outdoor shaded UTCI | UTCI for outdoor shaded space   | T <sub>a</sub>  | е            | V <sub>a</sub> |           |
| MRT                 | mean radiant temperature        |                 |              |                | R         |
| ESI                 | environment stress index        | T <sub>a</sub>  | RH           |                | SR        |
| HI                  | heat index                      | $T_a$           | RH           |                |           |
| Humidex             | humidity index                  | T <sub>a</sub>  | е            |                |           |
| WBGT                | wet-bulb globe temperature      | T <sub>a</sub>  | е            |                |           |
| WBT                 | wet bulb temperature            | T <sub>a</sub>  | RH           |                |           |
| WCT                 | wind chill temperature          | T <sub>a</sub>  |              | V <sub>a</sub> |           |
| AT                  | apparent temperature            | T <sub>a</sub>  | е            | V <sub>a</sub> |           |
| NET                 | net effective temperature       | $T_a$           | RH           | V <sub>a</sub> |           |

Note:

1) *R* stands for the radiation variables, including direct, diffuse, and reflected solar radiation, as well as upward and downward thermal radiation, while *SR* represents the solar radiation, which includes both the direct and diffuse solar radiation reaching the horizontal surface of the Earth.

2) All indices are with a unit expressed in °C.

# **Technical Validation**

Table 3. Summary table of accuracy, in terms of RMSE (°C) and bias (°C), obtained by comparing the indices computed from ERA5-Land reanalysis and weather station observations. This table only lists the indices that do not require radiation as data input.

| Thermal Indices     | Daily Mean |      | Daily Max | kimum | Daily Mi | Daily Minimum |  |  |
|---------------------|------------|------|-----------|-------|----------|---------------|--|--|
|                     | RMSE       | Bias | RMSE      | Bias  | RMSE     | Bias          |  |  |
| indoor UTCI         | 1.6        | -0.4 | 1.9       | -0.7  | 2.2      | -0.3          |  |  |
| outdoor shaded UTCI | 2.7        | -0.9 | 3.1       | -1.2  | 3.7      | -0.7          |  |  |
| HI                  | 2.0        | -0.6 | 2.4       | -0.9  | 2.5      | -0.4          |  |  |
| Humidex             | 1.9        | -0.6 | 2.3       | -0.8  | 2.7      | -0.5          |  |  |
| WBGT                | 1.1        | -0.4 | 1.3       | -0.5  | 1.6      | -0.3          |  |  |
| WBT                 | 1.3        | -0.3 | 1.4       | -0.4  | 1.9      | -0.3          |  |  |
| WCT                 | 3.1        | -1.7 | 4.8       | -2.5  | 3.3      | -1.3          |  |  |
| AT                  | 2.0        | -0.7 | 2.3       | -0.9  | 2.7      | -0.7          |  |  |
| NET                 | 2.7        | -0.3 | 3.3       | -0.7  | 3.6      | 0.2           |  |  |

E.g., Indoor UTCI: 81% of the stations presenting an RMSE for daily mean lower than 2°C



Fig. 2 Spatial distribution of values of RMSE and bias for daily mean indoor UTCI (left column) and outdoor shaded UTCI (right column) computed from ERA5-Land.

Table 4. Average RMSE values (°C) and biases (°C) of the MRT, UTCI, and ESI for stations that have both radiation data and commonly observed meteorological data for 2018.

| Station | tation Station Nam Longit | Longitudo | citudo Latitudo | Number of | MRT  |      | UT   | UTCI |      | ESI  |  |
|---------|---------------------------|-----------|-----------------|-----------|------|------|------|------|------|------|--|
| ID e    | Longhude                  | Lannude   | Records         | RMSE      | Bias | RMSE | Bias | RMSE | Bias |      |  |
| 54511   | Beijing                   | 116.47    | 39.80           | 230       | 10.1 | 8.1  | 5.4  | 3.8  | 1.0  | -0.1 |  |
| 54342   | Shenyang                  | 123.52    | 41.73           | 283       | 8.7  | 4.3  | 4.5  | 0.1  | 1.6  | -0.2 |  |
| 50953   | Harbin                    | 126.57    | 45.93           | 282       | 11.1 | 8.0  | 5.5  | 2.9  | 1.5  | -0.3 |  |
| 58362   | Baoshan                   | 121.45    | 31.40           | 289       | 7.4  | 3.3  | 3.2  | -0.5 | 1.2  | -0.7 |  |
| 57494   | Wuhan                     | 114.05    | 30.60           | 284       | 9.8  | 5.4  | 3.8  | 0.7  | 1.6  | -0.4 |  |
| 59287   | Guangzhou                 | 113.48    | 23.22           | 288       | 7.1  | 3.6  | 2.9  | 0.5  | 1.5  | -1.0 |  |
| 56187   | Wenjiang                  | 103.87    | 30.75           | 289       | 9.9  | 2.2  | 3.9  | 0.9  | 1.9  | -1.3 |  |
| 51463   | Urumqi                    | 87.65     | 43.78           | 275       | 12.1 | 1.6  | 6.9  | -0.8 | 3.2  | -0.4 |  |

• Radiation observations are only available at 8 stations.

- daily values of maximum global radiation flux
- the time when maximum global radiation flux occurs
- Paired-up observations have a size of 2220 hourly records
- BioKlima 2.6 were used to calculate the MRT and the outdoor unshaded UTCI



Fig. 6 The satellite images from Google Earth for the regions of Hengduan Mountains (upper left) and Lake Baikal (lower left), and the distributions of daily maximum UTCI from ERA5-HEAT (middle) and the present study (right) on 2018-07-20.

Lake Baikal

**RMSE:** 

 $5.2 \pm 2.5^{\circ}C$ 

 $4.5 \pm 2.4$ °C

#### Seasonal effects of the data accuracy



**Fig. 4** Average monthly RMSE values (left) and biases (right) for daily values of the MRT, UTCI, and ESI at specific time of the day when maximum global radiation flux occurs.

# **Usage Notes**

# **Usage Notes**

#### Assessment scale

- Each index is associated with a particular assessment scale
- E.g., "strong heat stress": UTCI (32-38°C), Humidex(40-45°C)
- Can refer to Blazejczyk's work published on Int. J. Biometeorol, 2012

### Suitability

- Indoor UTCI, outdoor shaded and unshaded UTCI
- Some can only be used in hot season, and some in cold season

### Orographic effects

- higher accuracy in flat areas
- accuracy degrades in mountainous areas and coastal zones (mixedpixel problem)

# **Code availability**

## **Code availability**

#### All codes were written in Python (3.8)

- Using cdsapi (0.3.1), numpy (1.19.2), pandas (1.1.3), netCDF4 (1.5.4), and scipy (1.5.3) libraries
- Users can use 'pip install' command to install the above libraries
- Developed on Linux (CentOS 6.10)
  - Can be easily adapted to Windows (if Anaconda is installed)
- Published along with the dataset
  - Freely available at the dataset repository

### Thanks!

#### Article is available at:

https://www.nature.com/articles/s41597-021-01010-w

Dataset and python source code are available at : *https://doi.org/10.6084/m9.figshare.c.5196296*