Comparison of ¹³C composition of atmospheric CO₂ in Nanjing and Beijing

Reporter: Jiaping Xu 2013-09-06

Outline

- 1. Background
- 2. Objective
- 3. Material and Method
- 4. Preliminary results
- 5. Conclusions
- 6. Next work

1. Background

- The local CO₂ emission is highly dependent on the level of urbanization and regional climatic and geographical condition. It might be of great help for understanding the different roles of natural and anthropogenic CO₂ sources in urban areas by monitoring CO₂ concentration and its ¹³C isotopic composition with a high frequency.
- The changes of land conversion and various local energy consumption structure can strongly influence terrestrial C cycle.
- Furthermore, meteorological and phenological factors, such as wind direction, heating demand and biological seasonality, can be the divers of the variation of atmospheric CO₂ in short (hourly) or long (seasonal) time scale.

2. Objective

- A comparison of ¹³C composition of atmospheric CO_2 between Beijing and Nanjing can help us to find out the controlling factors of CO_2 emission in specific environment and to deeply comprehend the effects of human and urbanization on ecosystem processes, 'urban C cycle'.
- The relationship between the results of two cities might be useful to improve air quality and to reduce the effect of 'heat island'.
- The performance of analyzers are also evaluated in this experiment.

3. Material and Method

3.1 Analyzer and Material

Fig. 1. ¹³CO₂ analyzer (Picarro G1101-i) and calibration system in Nanjing.

Fig. 2. ¹³CO₂ analyzer (Picarro G1101-i) and calibration system in Beijing.

Table 1. Dataset of Picarro.

Sites	Period of time
Beijing*	Nov.14,2012~Jun.30,2013
Nanjing	Feb.26,2013~Aug.26,2013

* Including meteorological data.

Table 2. Cycling of measurement.				
Gases	Lasting Time (min)			
Standard gas 1	5			
Standard gas 2	5			
Ambient air	170			

Sites	Gagog	CO ₂ concentration	δ ¹³ C*	
	Clases	(ppm)	(‰)	
Nanjing	Standard gas 1	380	-29.75 ± 0.27	
	Standard gas 2	500	-30.01 ± 0.18	
Beijing	Standard gas 1	379	-29.95	
	Standard gas 2	499	-29.36	

Table 3. Information of standard gases.

* (n=41) Results from CAAS and CAFS.

3.2 The method for correcting H_2O effect

RealH₂O =
$$f_{correction} * H_2O$$
 (Eq.1)
w = RealH₂O/(100-RealH₂O)*100 (Eq.2)
¹²CO₂ _ corrected = ¹²CO₂ _ wet/(1-w/100)

- H_2O means $H_2O(V\%)$ measured by analyzer.
- $f_{\text{correction}}$ is the coefficient for correcting H₂O. 1.1875 for Beijing and 0.8576 for Nanjing.
- RealH₂O stands for the H_2O after correction according to the standard of dew generator.
- w means H_2O mixing ratio.
- ${}^{12}CO_2$ wet means the value of ${}^{12}CO_2$ with H₂O measured by analyzer.
- ${}^{12}CO_2$ _corrected means dry ${}^{12}CO_2$ after removing H₂O dilution effect.

(Eq.3)

3.3 The method for calibrating measurement

$$[CO_2] = [{}^{12}CO_2] + [{}^{13}CO_2] + f[CO_2] \quad (Eq.4)$$

$$f = 0.00474 \qquad (Eq.5)$$

• To calculate total CO_2 concentration with f which stands for any other composition of CO_2 concentration in natural environment.

$$R_{a} = [{}^{13}C] / [{}^{12}C] = [{}^{13}CO_{2}] / [{}^{12}CO_{2}] = R_{VPDB} (1 + \delta_{a} / 1000) \quad (Eq.6a)$$

$$R_{VPDB} = 0.0111797 \qquad (Eq.6b)$$

$$[{}^{12}CO_{2}] = [CO_{2}](1 - f) / (1 + R_{VPDB} (1 + \delta_{a} / 1000)) \qquad (Eq.6c)$$

$$[{}^{13}CO_{2}] = [CO_{2}](1 - f) - [{}^{12}CO_{2}] \qquad (Eq.6d)$$

To calculate CO_2 concentration and $\delta^{13}C$ from raw data by ulletusing VPDB standard.

• A two-point linear interpolation was made to calibrate measured data to true data by using two standard gases.

3.4 Data processing

- 1. Remove methane data
- 2. Remove 3 minutes data after switchover (about 44 data)
- 3. Filter outliers
- 4. Correct H_2O mixing ratio according to 3.2
- 5. Calibrate raw data according to 3.3
- 6. Average data in 30 min

4. Preliminary results

- 1. The dilution effect of H_2O mixing ratio
- 2. Temporal variation of CO_2 and its ¹³C composition
- 3. The relationship between meteorological factors and ¹³C composition

4.1 The dilution effect of H_2O mixing ratio

Fig. 3.The relationship between H_2O measured by Picarro and dew generator Li-640.

Fig. 4.The dilution effect of H_2O .

Fig. 5.H₂O(V%) against total CO₂ concentration and ¹³C composition.

4.2 Temporal variation of CO₂ & its ¹³C composition

4.2.1 All data in time series

Fig. 6.The time series of total CO₂ concentration in Beijing and Nanjing.

Fig. 7.The time series of δ^{13} C in Beijing and Nanjing.

Fig. 8.The time series of H_2O in Beijing and Nanjing.

Fig. 9. Diurnal variation of CO_2 and $\delta 13C$ in Beijing and Nanjing.

Fig. 9. Keeling plots in Beijing and Nanjing.

4.2.2 Seasonal variation

Fig. 10. Seasonal variation of CO₂ and δ^{13} C in Nanjing.

Fig. 11. Seasonal variation of Keeling plots in Nanjing.

4.2.3 monthly variation

Month	Beijing		Nanjing	
	Intercept of Keeling(‰)	R	Intercept of Keeling(‰)	R
Nov	-22.5638 ± 0.255	0.99		
Dec	-22.8036 ± 0.14	0.973		
Jan	-22.3356 ± 0.132	0.837		
Feb	-22.3356 ± 0.212	0.941	-26.0357 ± 0.758	0.966
Mar	-21.2855 ± 0.234	0.919	-25.65 ± 0.352	0.912
Apr	-22.8417 ± 0.434	0.855	-26.5785 ± 0.358	0.922
May	-22.6419 ± 0.426	0.76	-25.6818 ± 0.339	0.931
Jun	-21.4794 ± 0.343	0.837	$0.26.2869 \pm 0.428$	0.89
Jul			-24.6483 ± 0.494	0.867
Aug			-22.9957 ±0.517	0.897

Table 4. Monthly Keeling plots.

4.2.4 Comparison between Beijing and Nanjing

Fig. 14. The time series of total CO₂ concentration in Beijing and Nanjing.

Fig. 15.The time series of δ^{13} C in Beijing and Nanjing.

Fig. 16.The time series of H_2O in Beijing and Nanjing.

4.3 The relationship between meteorological factors and ¹³C composition

4.3.1 Wind

Beijing wind rose 2012.11.14-2013.6.30

Fig. 17. The wind rose in Beijing.

Fig. 18. The map of observation site.

Fig. 19.Wind speed against CO_2 and $\delta^{13}C$.

Fig. 20.Wind direction against CO₂ and δ^{13} C.

4.3.2 Air temperature

Fig. 21.Time series of air temperature.

Fig. 22.Air temperature against CO_2 and $\delta^{13}C$.

4.3.3 Precipitation

Fig. 23.Keeling plot in raining time.

4.3.4 Down Radiation

Fig. 25.DR against CO₂.

Fig. 26.DR against δ^{13} C.

4.3.5 Relative humidity

Fig. 27.RH against δ^{13} C.

Fig. 28.RH against CO₂.

5. Conclusion

- 1. High H₂O mixing ratio in ambient air deeply influenced the measurement of ¹³C composition. Therefore the correction of H₂O was needed.
- 2. More negative $\delta^{13}C_s$ (the intercept of Keeling plot) could be found in Nanjing and this maybe due to the huge amount of industrial emission around NIUST site. The obvious seasonal variation of CO₂ and $\delta^{13}C$ in Beijing show the complex natural and anthropogenic effect.
- 3. Thermodynamic factors, such as air temperature and DR, can affect plants' phenology and peoples' behavior and this could further influence CO₂ and its ¹³C composition in a long time scale.
- 4. The wind fields can determine the sources and the mixing degree of atmospheric CO₂ in a short time scale, which were also affected by surrounding structures.

6. Next work

- 1. To keep the quality of data.
- 2. To analyze the Picarro's data combined with meteorological data in YF site.
- 3. To divide the CO₂ contributors in Beijing and Nanjing in a high frequency.

Thank Voul

