Update on IRGASON Project

Reporter: Wang Wei, Gao Yunqiu, Deng Lichen, Xu Jiaping

Nanjing, April 11, 2014
Outline

• 1. Background & Objective
• 2. updated results
• 3. Conclusions
• 4. Next work
1. Background & Objective
In typical winter or desert, the flux is about of 0.2-0.5 mg CO$_2$·m$^{-2}$·s$^{-1}$.
To evaluate the performance of IRGASON in low flux conditions and compare it with Gill+Li-7500A system.

IRGASON’s advantages in geometry (colocation, synchronicity and aerodynamics) and low power consumption.
Data processing

• EddyPro 5.0 (from 10 Hz to 30 min)
• Tilt correction: double rotation
• Detrend: block average
• Time lag detection: covariance maximization
• Compensate density fluctuation: WPL correction
• FFT: Hamming (50)
• Spectra correction: low frequency (Moncrieff et al., 2004),
• high frequency (Moncrieff et al., 1997)
2. updated results
Fig. 1. Fc (IRGASON against Gill+Li-7500A) in Xinjiang.
Fig. 2. The time series of Fc in Xinjiang.
Negative Fc could be found at noon with low wind speed.

\[u < u_{\text{avg}} \quad \rightarrow \quad u' > 0 \]
\[w'u' < 0 \]
\[T_a \quad \rightarrow \quad \text{CO}_2' < 0 \]
Table.1 Flux carbon in desert in winter.

<table>
<thead>
<tr>
<th></th>
<th>IRGASON</th>
<th>Gill+Li-7500A</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (mg/(m²·s))</td>
<td>-0.516</td>
<td>-1.734</td>
</tr>
<tr>
<td>C (g/(m²·yr))</td>
<td>-92.49</td>
<td>-310.70</td>
</tr>
</tbody>
</table>

Fc_wpl = Fc_raw + Fc_wpl_LE + Fc_wpl_H

Fc_wpl: Carbon dioxide flux after WPL correction, mg/(m²·s)
Fc_raw: Raw carbon dioxide flux, mg/(m²·s)
Fc_wpl_LE: latent heat correction, mg/(m²·s)
Fc_wpl_H: Sensitive heat correction, mg/(m²·s)
*pressure and self-heating also will be considered in some cases.
Fig. 4. The diurnal composite of Fc_IRGASON in Xinjiang.
Fig. 5. The diurnal composite of Fc_Gill+Li-7500A in Xinjiang.
Fig. 6. λE and H_c (IRGASON against Gill+Li-7500A) in Xinjiang.
Fig. 7. The diurnal composite of λE in Xinjiang.
\[
F_{c_wpl_H} = \left[\left(1 + \mu \cdot \sigma \right) \cdot CO_2/(T_a+273.15) \right] \cdot \left[H_{c_wpl}/(\rho_{\text{oua}} \cdot C_p) \right]
\]

\(\mu = 1.6077 \); ratio of molecular weight of dry air to that of water vapor
\(C_p = 1004.67 \); specific heat capacity of air, J/(kg.K)
\(\sigma \): \(H_2O \) density against dry air density
\(\rho_{\text{oua}} \): wet air density, g/m\(^3\)
\(\rho_{\text{oud}} \): dry air density, g/m\(^3\)
\(H_{c_wpl} \): sensitive heat after WPL correction, w/m\(^2\)

\[
H_{c_wpl} = (H_{s_wpl} - \rho_{\text{oud}} \cdot C_p \cdot 0.514 \cdot (287.058 \cdot 0.001) \cdot (T_a+273.15)^2 \cdot w'H_2O'/(press)) \cdot (T_a/T_s)
\]

\[
H_{s_wpl} = \rho_{\text{oua}} \cdot C_p \cdot w'T_s'
\]

\[T_s = (1 + 0.51q) \cdot T_a\]
First reason: Ts

Fig. 8. The diurnal composite of Ts in Xinjiang.
Fig. 9. The time series of T_s in Xinjiang.
Fig. 10. The diurnal composite of H_c in Xinjiang.
Second reason: CO₂ and H₂O

Fig. 8. H₂O and CO₂ (IRGASON against Gill+Li-7500A) in Xinjiang.
Fig. 15. The diurnal composite of H$_2$O in Xinjiang.
Fig. 16. The diurnal composite of CO$_2$ in Xinjiang.
3. Conclusion

• 1. According to Fc, the performance of IRGASON was better than Gill+Li-7500A.
• 2. The error results from Ts and H bias.
4. Next step
Self heating

Same Ts, small radiation loading

Different Ts

The influence of self-heating will be explained by comparison data with and without self-heating.
Wet CO$_2$

The dry CO$_2$ can be calculated by WLG hourly data.
Fig. 1. The time series of Ts in Xinjiang.
Fig. 2. The time series of u^* in Xinjiang.
Fig. 3. The time series of H₂O in Xinjiang.
Fig. 4. The time series of CO$_2$ in Xinjiang.
Fig. 5. The time series of Hc in Xinjiang.
Fig. 6. The time series of λE in Xinjiang.
Fig. 7. The time series of F_c in Xinjiang.
Fig. 8. The time series of wind speed in Xinjiang.
Fig. 9. T_s and u^* (IRGASON against Gill+Li-7500A) in Xinjiang.
Fig. 10. H_2O and CO_2 (IRGASON against Gill+Li-7500A) in Xinjiang.
Fig. 11. λE and Hc (IRGASON against Gill+Li-7500A) in Xinjiang.
Fig. 12. Fc (IRGASON against Gill+Li-7500A) in Xinjiang.
Fig. 13. The diurnal composite of Ts in Xinjiang.
Fig. 14. The diurnal composite of u^* in Xinjiang.
Fig. 15. The diurnal composite of H$_2$O in Xinjiang.
Fig. 16. The diurnal composite of CO$_2$ in Xinjiang.
Fig. 17. The diurnal composite of H_c in Xinjiang.
Fig. 18. The diurnal composite of λE in Xinjiang.
Fig. 19. The diurnal composite of Fc_IRGASON in Xinjiang.
Fig. 20. The diurnal composite of Fc_Gill+Li-7500A in Xinjiang.
Fig. 21. The diurnal composite of wind speed in Xinjiang.