

Yale-NUIST Center on Atmospheric Environment

Temporal variation of N₂O flux from agricultural landscapes based on eddy covariance method

Yanhong Xie 2020/07/17

Background

- N₂O is one of the most important greenhouse gases and the dominant stratospheric ozonedepleting substance (*Stocker et al, 2013; Ravishankara et al., 2009*).
- ➢ Due to nitrogen fetilizer application, agricultural ecosystems are considered as the biggest anthropogenic source of N₂O emissions, which contribute nearly 80% of the global anthropogenic N₂O budget (*Crutzen et al., 2008; Davidson et al., 2009*).

(Aliyu et al., 2019)

Background

Drivers and processes of soil N₂O emissions across temporal and spatial scales

Mesurement method Drivers of N₂O flux

(Butterbach-Bahl et al., 2013) ³

Background

> The Yangtze River Delta is the major agricultural region in China. The agricultural structure is complex in this region.

	1/12						- Car	
Rice paddy	Wheat	Corn	Cotton	Rivers	Aquaculture ponds	Lakes	and when	S- C
		γ]]	h Spi	
Agricultural ecosystems				aquatic ecosystems				
			γ]		Vear 2008 N2O, Mg per km2	
Compound agricultural area								
$\mathbf{\nabla}$								(Zhou et al., 2014)
Magnitude of N ₂ O flux??								
Impact factors on N ₂ O flux??								

Objectives

□ What is the magnitude and temporal variation of N₂O flux from agricultural landscapes?

 \square How do N₂O flux respond to environmental conditions?

Materials and methods: site description

✓ The EC tower is located in Quanjiao, Anhui Province (31.9672°N, 118.2607°E).

Land cover surrounding the tower in a 5 km radius.

Materials and methods: flux measurements

Setup of the tubing system

Materials and methods: data process

Materials and methods: ancillary data

- ✓ Footprint estimation: Flux Footprint Prediction method (Kljun et al., 2015)
- ✓ Daily precipitation: Chuzhou station (<u>http://data.cma.cn/</u>)
- NDVI data: proba-v products (https://proba-v-mep.esa.int/applications/time-seriesviewer/app/app.html)

Results analysis

□ The performance of the TGA system

- \square Temporal variations of N₂O flux from agricultural landscapes
- \square Environmental factors on N₂O flux

Time lag estimation:

Covariance maximization method:

$$r(t) = \frac{\overline{w'(t+\tau)\rho_c'(t)}}{\sigma_w \sigma_{\rho_c}}$$

Time lag: covariance maximization with default, but restrict the range of time lag: 6.4-8.4 s

2019_8_14-8_16 12:00-15:00

Time lag: 7.4 s

Spectral analysis:

Comparison of CO₂ flux : TGA system vs. EC150 system

• On half-hourly scale, CO₂ flux measured by the TGA system agreed well with that from the EC150 system.

Footprint analysis

Main land use types: cropland and water body

N₂O flux measurement: half-hourly scale

N₂O flux measurement: diurnal component

Note: different letters denote significant differences.

N₂O flux measurement: daily scale

N₂O flux measurement: monthly scale

	Growing season	Non-growing season
F _n (nmol m⁻² s⁻¹)	1.15 ± 3.13	0.55 ± 2.65

Environmental factors on N₂O flux: air temperature

Environmental factors on N₂O flux: precipitation

Comparison with other literatures

Conclusions

- > During the measurement period (Oct. 2018 Jul. 2020), N₂O flux ranged from -1.07 to 3.92 nmol m⁻² s⁻¹, with mean value of 0.77 ± 0.68 nmol m⁻² s⁻¹ on daily scale.
- > N₂O flux in growing season (1.15 ± 3.13 nmol m⁻² s⁻¹) was higher than that in nongrowing season (0.55 ± 2.65 nmol m⁻² s⁻¹), and it accounted for 67% of the total flux.
- There was no relation bewteen N₂O flux and T_a in growing season, but a weak positive relation in non-growing season. And precipitation had greater influence on N₂O flux from growing season.

Next work

- To estimate the contribution of N_2O flux from different underlying types.
- To measure N_2O flux from a single rice paddy field by static chamber method.

Thank you for your attention!