

Senior thesis proposal: Study on indirect N_2O emissions within a rice paddy-dominated agricultural watershed.

Adviser: Xuhui Lee & Zhenghua Hu Reporter: Yanhong Xie 2015.12.18

Outline

- Introduction
- Research purpose
- Research contents
- Experiment plan

Introduction

- N_2O is an important greenhouse gas which has a 100 years global warming potential (GWP₁₀₀) 298 times that of an equal mass of carbon dioxide (IPCC 5). And it involves in stratospheric ozone depletion (Ravishankara et al., 2009).
- Agriculture accounts for nearly 80% of the global anthropogenic N₂O budget (Davidson, 2009; Crutzen et al., 2008).
- N₂O emissions include direct and indirect emission pathways. Direct N₂O emissions are fairly well understood (Cai et al., 1997; Dobbie & Smith, 2003). While, less knowledge is known about indirect N₂O emissions.

Research status: temporal variations

Xia et al., 2013, Atmospheric Environment

Vilain et al., 2012, Biogeosciences

Research status: spatial variations

Turner et al., 2015, PANS

Turner et al., 2015, PANS

Research status

Some studies suggesting riverine N₂O loss is underestimated, which notably contradicts the *EF*_{5r} (indirect emission factor for rivers) reduction (Beaulieu et al., 2011; Outram & Hiscock, 2012; Turner et al., 2015).

Research status: environmental factors

- The variations of NO_3^--N and NH_4^+-N concentrations may have changes on N cycling, which could affect N₂O flux (Baulch et al., 2012).
- In surface water, NO₃⁻-N concentrations and Eh (Oxidation-Reduction Potential) were the most significant drivers of indirect N₂O emission (Xia et al., 2013).

Research purposes

To determine the potential drivers of indirect N₂O emissions and calculate the regional *EF*_s (emission factors).

Research contents

- Research the temporal and spatial variations of indirect N₂O emissions in the Jurong Reservoir watershed.
- Analysing the relationships of N₂O emissions and the environmental factors.
- \succ Calculating the *EF*_s within the Jurong Reservoir watershed.

• Study area: Jurong Reservoir watershed

characteristic: an area of 45.5 km^2 including three kinds of water bodies(8.2%): a reservoir, three rivers, and thousands of small ponds. (Yan et al., 2011)

Flow chart

Calculating N₂O flux (Liss & Slater, 1974):

$$F = k(C_w - C_{eq}) \tag{1}$$

k: the gas transfer coefficient (cm/h)

 $C_{\rm w}$: the measured N₂O concentration (in water; µmol/L) $C_{\rm eq}$: saturation concentration of N₂O (in water; µmol/L)

Emission factors of N₂O:

$$EF(A) = \left[\left(f \times a \times t \right) / N \right] \times 0.63 \times 44$$

f: averaged N₂O fluxes emission

- a: an area of Jurong Reservoir watershed
- t: time

N: net inputs of N in Jurong during the time

0.63: transfer coefficient

44: molar mass of N_2O

(2)

Emission factors of N_2O :

$$EF(B) = \frac{c(N_2O - N)}{c(NO_3^- - N)}$$
(3)

$$EF(C) = \frac{m(N_2O - N)}{m(TN_{input})}$$
(4)

(Outram & Hiscock, 2012)

Schedule:

- 2015.10-2016.03 conducting experiments
- 2016.03-2016.04 data processing
- 2016.03-2016.05 thesis writing

Expected results:

- Showing the temporal and spatial distribution of indirect N_2O emissions in the Jurong Reservoir watershed.
- Determining which indicators are potential drivers of indirect N_2O emissions.
- Calculating EF of indirect N_2O emissions.

Thank you