A discussion on the paper “Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions”

By Ryu Uemura et al., 2008

Reporter: Xie Chengyu
2015.09.18
Outline

- Background
- Objectives
- Methods
- Results and Discussions
- Conclusions
Background

- The isotopic composition of most of meteoric water is found in a graph of δD versus $\delta^{18}O$ along the “Global Meteoric Water Line”: $\delta D = 8\times\delta^{18}O + 10\%$; the deuterium excess d has been defined as the difference $d = \delta D - 8\times\delta^{18}O$. [Craig, 1961; Dansgaard, 1964]

- The glacial-interglacial changes in d were interpreted as changes in relative humidity and temperatures at the moisture source ocean. [Jouzel et al., 1982; Cuffey and Vimeux, 2001]

- The interpretation of d which relies on various models predicts a close relationship between d and ocean surface conditions.

- A few in situ measurements of vapor isotopes in the oceans have been reported, but d has not been observed except for subtropical oceans and the Mediterranean Sea. [Craig and Gordon, 1965; Gat et al., 2003]

- In this study, we measured isotope compositions of air moisture in the Southern Ocean, then discussed the observation results and simulations from a couple of isotope GCMs.
A global-scale closure assumption \((\delta_{V0} = \delta_{E})\)

\[
1 + \delta_{V0} = \frac{1}{\alpha} \frac{(1 - k)}{1 - kh} (1 + \delta_{\text{ocean}}) \ldots \ldots (1)
\]

\(\delta_{V0}\) — the initial isotope content in the water vapor;
\(\delta_{E}\) — the isotope contents of the evaporating water;
\(\delta_{\text{ocean}}\) — an ocean isotope composition;
\(k\) — a kinetic fractionation factor;
\(\alpha\) — an equilibrium fractionation factor;
\(h\) — relative humidity defined as a value normalized on the SST \((h^*)\) in the model.

[Merlivat and Jouzel, 1979]
Objectives

- Showing the isotope ratios of atmospheric water vapor near the ocean surface in middle and high latitudes of the Southern Ocean.

- Showing the correlations between deuterium excess \((d)\) versus relative humidity \((h)\) and \(d\) versus sea surface temperature (SST).

- Using atmospheric general circulation models (GCMs) to predict the isotope ratios of marine vapor and validating GCMs through data.
Outline

♦ Background
♦ Objectives
♦ Methods
 – Ship observation
 – A vapor sampling system
 – Isotope general circulation model
♦ Results and Discussions
♦ Conclusions
Measurements

Air temperature and relative humidity were measured at 15 m altitude on the ship.

Figure 1. Sampling sites on a map of the ship route (gray).
Figure 2. Schematic of the sampling system installed on the ship.
Isotope general circulation model

A global-scale closure assumption \((\delta_{V0} = \delta_{E})\)

Systematic bias

An atmospheric general circulation models (GCMs)

The GCMs explicitly simulate the global and regional features of atmospheric dynamics and thermodynamics and the detailed hydrological cycles.

1. **Isotope Global Spectral Model (iso-GSM)** [Yoshimura et al., 2008]
 - 200 km horizontal resolution + 28 vertical sigma levels

2. **NASA Goddard Institute for Space Studies (GISS) GCM II** [Jouzel et al., 1987]
 - \(8^\circ \times 10^\circ\) resolution + 9 vertical sigma levels
Outline

- Background
- Objectives
- Methods
- Results and Discussions
 - A. Isotope ratios in vapor
 - B. Deuterium excess in vapor
 - C. Comparison with GCMs
- Conclusions
Results and Discussions

Table 1. Isotope Ratios in Water Vapor and Meteorological Conditions Along the Ship Route

<table>
<thead>
<tr>
<th>Sampling Start Time (UTC)</th>
<th>Sampling Duration (h)</th>
<th>Latitude (°S)</th>
<th>Longitude (°E)</th>
<th>Atmospheric Pressure (hPa)</th>
<th>Air Temperature (°C)</th>
<th>SST (°C)</th>
<th>h(%)</th>
<th>δ¹⁸O(‰)</th>
<th>δD(‰)</th>
<th>d(‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leg 1 (Cape Town to Antarctica)</td>
<td></td>
</tr>
<tr>
<td>5 Jan. 0413</td>
<td>01:42</td>
<td>38.91</td>
<td>20.11</td>
<td>1017</td>
<td>18.3</td>
<td>22.8</td>
<td>63.7</td>
<td>-15.71</td>
<td>-91.7</td>
<td>34.0</td>
</tr>
<tr>
<td>5 Jan. 0845</td>
<td>03:00</td>
<td>39.86</td>
<td>20.53</td>
<td>1018</td>
<td>19.4</td>
<td>21.5</td>
<td>57.0</td>
<td>-14.56</td>
<td>-86.5</td>
<td>30.0</td>
</tr>
<tr>
<td>5 Jan. 1310</td>
<td>03:08</td>
<td>40.56</td>
<td>20.93</td>
<td>1016</td>
<td>18.7</td>
<td>21.2</td>
<td>65.8</td>
<td>-14.47</td>
<td>-96.3</td>
<td>19.5</td>
</tr>
<tr>
<td>Leg 2 (Antarctic Coastal Area)</td>
<td></td>
</tr>
<tr>
<td>10 Jan. 1745</td>
<td>08:40</td>
<td>65.10</td>
<td>33.75</td>
<td>995</td>
<td>-0.3</td>
<td>0.0</td>
<td>80.1</td>
<td>-17.17</td>
<td>-134.0</td>
<td>3.4</td>
</tr>
<tr>
<td>11 Jan. 0610</td>
<td>04:35</td>
<td>65.32</td>
<td>34.54</td>
<td>994</td>
<td>-0.3</td>
<td>0.1</td>
<td>79.7</td>
<td>-17.24</td>
<td>-132.2</td>
<td>5.8</td>
</tr>
<tr>
<td>11 Jan. 1145</td>
<td>02:00</td>
<td>65.46</td>
<td>34.55</td>
<td>994</td>
<td>-1.6</td>
<td>0.1</td>
<td>80.7</td>
<td>-19.27</td>
<td>-150.5</td>
<td>3.6</td>
</tr>
<tr>
<td>Leg 3 (Antarctica to Fremantle)</td>
<td></td>
</tr>
<tr>
<td>20 Jan. 0540</td>
<td>09:02</td>
<td>64.29</td>
<td>61.83</td>
<td>991</td>
<td>0.4</td>
<td>1.0</td>
<td>93.5</td>
<td>-13.27</td>
<td>-108.9</td>
<td>-2.8</td>
</tr>
<tr>
<td>21 Jan. 0440</td>
<td>05:15</td>
<td>62.39</td>
<td>71.16</td>
<td>995</td>
<td>0.4</td>
<td>1.7</td>
<td>85.4</td>
<td>-15.61</td>
<td>-114.9</td>
<td>10.0</td>
</tr>
<tr>
<td>21 Jan. 1110</td>
<td>06:50</td>
<td>61.51</td>
<td>74.27</td>
<td>995</td>
<td>0.3</td>
<td>1.8</td>
<td>77.0</td>
<td>-16.41</td>
<td>-120.9</td>
<td>10.4</td>
</tr>
<tr>
<td>29 Jan. 1210</td>
<td>04:55</td>
<td>33.47</td>
<td>114.35</td>
<td>1022</td>
<td>17.0</td>
<td>19.4</td>
<td>67.3</td>
<td>-14.60</td>
<td>-97.9</td>
<td>18.9</td>
</tr>
</tbody>
</table>

*a*Latitude and longitude are shown in decimal system.
Figure 3. Latitudinal distribution of δD, $\delta^{18}O$ and d in water vapor.
Figure 4.
Time series of isotope compositions and metrological conditions.
Figure 5. Correlations of d in vapor versus relative humidity and SST.

A multilinear regression analysis of d, h and SST

$$d = 0.45 \text{ SST} - 0.42 \ h + 37.9 \quad R^2 = 0.73$$
Figure 6. Comparison with GCM.

- **blue line** — the d in marine vapor predicted by the iso-GSM
- **blue shaded area** — 1σ
- **slashed area** — 2σ

(the standard deviations of the model predicted d)
Conclusions

- The large variation of δD and $\delta^{18}O$ found south of $65^\circ S$ is attributed to the mixture of marine and Antarctic vapors.

- The δD in vapor decreases along with higher latitude from $30^\circ S$ to $60^\circ S$, the gradient of $\delta^{18}O$ from $30^\circ S$ to $60^\circ S$ is flat in comparison to that of δD because of kinetic fractionation during the evaporation.

- The d in vapor shows statistically significant correlations with h and SST, then provides the first evidence for a close relation between d and ocean surface conditions in different southern oceans.

- The observations are consistent with isotope ratios simulated by the iso-GSM, and thus validate the simulation.
THANK YOU