

Estimating evaporation in Taihu based on isotopic mass balance model

Reporter: Xie Chengyu

2017.05.19

ntei **Background**01

Experimental method⁰²

Results and discussion03

Conclusions04

Future work05

1. Background

As the most ideal natural tracer, ¹H²H¹⁶O and ¹H₂¹⁸O are widely used in studies of the regional hydrologic cycle for local meteorology and hydrology, such as evaporation rate. (Edwards et al., 2005; Yakir et al., 2000)

- Isotopic mass balance model has been widely applied in many inland lakes to assess evaporative losses (Lake Titicaca — Zuber, 1983; Mediterranean Sea — Gat *et al.*, 1996; Lake Biwa — Taniguchi *et al.*, 2000; Lake Edward — Russell and Johnson, 2006; Lake Okanagan — Wassenaar *et al.*, 2011).
- In this study, we estimated evaporation in Taihu based on isotopic mass balance to explore the isotope enrichment mechanism of a subtropical large shallow lake.

2. Experimental method

2.1 Isotopic mass balance model

3. Results and discussion

- > 3.1 Results of isotopic mass balance and comparison
- ➤ 3.2 Slope of local evaporation line (S_{LEL})
- > 3.3 Sensitivity analysis of isotopic mass balance

3.1 Results of isotopic mass balance and comparison

Fig.1 Spatial distribution of lake water isotope composition in Taihu, 2015⁷

+: daily water in MLW; : whole lake water survey Fig.2 Temporal variation of lake water isotope composition in Taihu, 2015

Fig.3 Temporal variation of different water amounts in Taihu

Fig.4 The relations between δ^2 H and δ^{18} O in different water of lake Taihu.

GMWL: δ^2 H=8.17 δ^{18} O+10.56; LWL: δ^2 H=8.77 δ^{18} O+13.96; LEL in MLW: δ^2 H=4.80 δ^{18} O-9.4, R²=57%; LEL in Taihu: δ^2 H=6.66 δ^{18} O-0.71, R²=87%.

3.2 Slope of local evaporation line

Fig.8 Relation between S_{LEL} and lake environment factors.

Table 1. The influence of parameters in isotopic mass balance method on evaporation.

	ΔE (HDO) mm/year		ΔE (H ₂ ¹⁸ O) mm/year	
	$\Delta = \pm 5\%$	$\Delta = \pm 10\%$	$\Delta = \pm 5\%$	∆=±10%
δ_{I}	$\pm 16.17\%$	$\pm 32.35\%$	$\pm 17.47\%$	$\pm 34.98\%$
$\delta_{ m Q}$	$\pm 9.22\%$	$\pm 18.50\%$	$\pm 10.54\%$	$\pm 21.08\%$
$\delta_{ m L}$	$\pm 0.65\%$	$\pm 1.33\%$	$\pm 0.76\%$	$\pm 1.46\%$
$\delta_{ m E}$	$\pm 6.78\%$	$\pm 13.72\%$	$\pm 6.55\%$	$\pm 13.22\%$
Ι	$\pm 11.57\%$	$\pm 23.18\%$	$\pm 12.67\%$	$\pm 25.39\%$
V	$\pm 0.50\%$	$\pm 0.95\%$	$\pm 0.26\%$	$\pm 0.75\%$
dV/dt	$\pm 0.08\%$	$\pm 0.12\%$	$\pm 0.03\%$	$\pm 0.13\%$
$d\delta_{\rm L}/dt$	$\pm 0.48\%$	$\pm 0.97\%$	$\pm 0.26\%$	±0.53%

4. Conclusions

- 1. In 2015, the spatial distribution of δD_L and $\delta^{18}O_L$ in lake water was controlled by water flow direction, causing isotopic enrichment in the southeast of lake. On yearly time-scale, a seasonal regularity was that δD_L and $\delta^{18}O_L$ were poor in winter and enriched in spring.
- 2. The evaporation amounts of Taihu in 2015 calculated by isotopic mass balance method were $880.56 \pm 42.60 \text{ mm}$ (HDO) and $689.93 \pm 37.86 \text{ mm}$ (H₂¹⁸O). Within a certain error range, this method was suitable for large shallow lakes for evaporation capacity calculation.
- 3. The S_{LEL} of Taihu arrived at 6.66 during 2015 mainly for high humidity and temperature, besides its low elevation.
- 4. The precision of result in isotopic mass balance method mainly depended on the accuracy of $\delta_{\rm E}$, Through simulated by HDO which was less sensitive to $\delta_{\rm E}$, the evaporation result of Taihu was close to other evaporation model calculation results.

5. Next work

- Through reading articles, find out a deeper difference between HDO and H₂¹⁸O for application the isotopic mass balance model.
- Apply the isotopic mass balance model to small fishpond without inflow or outflow, then quantify parameters in the C-G model.

Thank you for suggestions!