

Temporal and spatial variable of GHGs in Lake Taihu

Qitao Xiao Video conference of YNCenter 2012-11-9

I Concentration

2 Flux

Schallenge & Question

1 Concentration

Fig 1: The temporal variable of CO_2 and CH_4 from August 1 ,2012 (doy 214) to October 28, 2012(doy 302). Missing data : October 25,2012(doy 299)

Fig 2: The temporal variable of N₂O from August 1 ,2012 (doy 214) to October 28, 2012(doy 302). Missing data : October 25,2012(doy 299)

◆2. Diurnal variable

Fig 4: The diurnal variable of CH₄ The interval of sample is three hours, and it last three days. Site :MLW Depth: 20cm from the surface of lake Time: a) August b) September

c) October

Fig 5: The diurnal variable of N₂O

The interval of sample is three hours, and it last three days. Site :MLW Depth: 20cm from the surface of lake Time: a) August

- b) September
- c) October

♦ 3. Spatial variable

Fig 6: The spatial variable of CO₂

- a) sample time : August 15 and 16,2012 the number of sample sites are 32
- b) sample time: September 13,2012 the number of sample sites are 14
- c) sample time :October 19,2012 the number of sample site are 16

Fig 7: The spatial variable of CH₄

- a) sample time : August 15 and 16,2012 the number of sample sites are 32
- b) sample time: September 13,2012 the number of sample sites are 14
- c) sample time :October 19,2012 the number of sample site are 16

Fig 8: The spatial variable of N₂O

- a) sample time : August 15 and 16,2012 the number of sample sites are 32
- b) sample time: September 13,2012 the number of sample sites are 14
- c) sample time :October 19,2012 the number of sample site are 16

 4 The relationship between GHGs concentration and micrometeorological

a) water temperaturec) wind speed

b) air temperatured) solar radiation

Fig 10: The correlation between CH₄ concentration and :

- a) water temperature
- c) wind speed

b) air temperatured) solar radiation

Fig 11: The correlation between N₂O concentration and :

- a) water temperaturec) wind speed
- b) air temperatured) solar radiation

5.The relationship between GHGs concentration and water quality

The correlation coefficients between CO_2 concentration and most lake chemical, physical and morphometrical variables were statistically significant, the best predictor For lake CO_2 concentration was O_2 saturation percentage, followed by NH_4 -N and water temperature. *(Pirkko Kortelainen et al, Global Change Biology, 2006)*

The data of water quality is measured by YSI when spatial sampling, and the main parameters measured by YSI contain : water temperature, conductivity, pH, oxidation-reduction potential (ORP), turbidity, Chlorophyll, blue green algae (BGA), dissolved oxygen (DO).

The scene of measure water quality

Table 1: The Correlation between CO_2 concentration of spatial water sample and water quality (p<0.05)

	August	September	October	whole data
	(n =15)	(n =14)	(n =16)	(n =45)
Water temperature	NS	NS	NS	NS
Conductivity	$R^2 = 0.1259$	NS	$R^2 = 0.6631$	NS
pН	$R^2 = 0.2471$	R2 =0.5674	$R^2 = 0.0234$	$R^2 = 0.2376$
ORP	NS	NS	NS	NS
Turbidity	$R^2 = 0.1411$	$R^2 = 0.1538$	NS	NS
chlorophyll	NS	$R^2 = 0.1991$	$R^2 = 0.2789$	NS
BGA	$R^2 = 0.1089$	NS	NS	NS
DO	$R^2 = 0.3043$	$R^2 = 0.939$	$R^2 = 0.7668$	$R^2 = 0.2648$

NS : no significantBGA: blue green algaeORP: oxidation-reduction potentialDO :dissolved oxygenwhole data: data of August, September, October

Table 2: The Correlation between CH_4 concentration of spatial water sample and water quality (p<0.05)

	August	September	October	whole data
	(n =15)	(n =14)	(n=16)	(n =45)
Water temperature	NS	NS	$R^2 = 0.1394$	NS
Conductivity	NS	NS	$R^2 = 0.1808$	NS
pН	NS	NS	NS	NS
ORP	$R^2 = 0.193$	NS	$R^2 = 0.1576$	NS
Turbidity	$R^2 = 0.4823$	$R^2 = 0.2504$	NS	NS
chlorophyll	$R^2 = 0.2587$	NS	NS	NS
BGA	NS	NS	NS	NS
DO	NS	NS	NS	NS

NS : no significantBGA: blue green algaeORP: oxidation-reduction potentialDO :dissolved oxygenwhole data: data of August, September, October

17

Table 3: The Correlation between N_2O concentration of spatial water sample and water quality (p<0.05)

	August	September	October	whole data
	(n =15)	(n=14)	(n=16)	(n =45)
Water temperature	$R^2 = 0.1922$	NS	$R^2 = 0.1902$	NS
Conductivity	$R^2 = 0.7448$	$R^2 = 0.1124$	$R^2 = 0.3178$	$R^2 = 0.1856$
рН	NS	$R^2 = 0.3019$	NS	$R^2 = 0.2376$
ORP	$R^2 = 0.1837$	NS	NS	NS
Turbidity	NS	$R^2 = 0.2947$	NS	NS
chlorophyll	$R^2 = 0.4055$	$R^2 = 0.3326$	$R^2 = 0.1935$	$R^2 = 0.2882$
BGA	$R^2 = 0.2255$	NS	NS	NS
DO	$R^2 = 0.1287$	$R^2 = 0.8013$	$R^2 = 3227$	$R^2 = 0.2938$

NS : no significantBGA: blue green algaeORP: oxidation-reduction potentialDO :dissolved oxygenwhole data: data of August, September, October

2 Flux

 \diamond 1.MLW CO₂ Flux

Fig 13: The flux of CH_4. Shaking the bottle for 2 minutes from doy 65 2012. CuSO₄ wasn't added in water sample and water sample was immediately analyzed after shaking 5 minutes from doy 196 2012

Fig 14: The flux of N_2O. Shaking the bottle for 2 minutes from doy 65 2012. CuSO₄ wasn't added in water sample and water sample was immediately analyzed after shaking 5 minutes from doy 196 2012.

•4. Compare the CO_2 and CH_4 flux measured by three different methods.

Fig 15: CO_2 flux of August,2012 measured by gradient diffusion method (Picarro), eddy covariance system (EC) and water equilibrium method (WE).

Median values of EC, Picarro, WE were -0.1428, 0.0066, 0.0106 mgm⁻²s⁻¹ Yale

Fig 16:CH₄ flux of August,2012 measured by gradient diffusion method (Picarro), eddy covariance system (EC) and water equilibrium method (WE).

Median values of Picarro, WE were 0.3927, 0.06 μ gm⁻²s⁻¹

3 Challenge & Question

1.The impact of analysis time on GHGs concentration

- Fig 17: The impact of analysis time at different water depth.
- **check :** water sample was analyzed as soon as possible .
- treat: 20cm analyzed after 7days 50cm analyzed after 10 days 100cm analyzed after 14days 150cm analyzed after 18days

\diamond 2.Cacluate CO₂ concentration by using data of alkalinity

- Oak Ridge National Laboratory pointed out that they can use two of the four measureable parameters of the CO₂ system (total alkalinity, total inorganic CO₂, pH, and partial of CO₂) to calculate the other two parameters through a program.
- The relationships between CO₂ concentration and lake chemistry were examined using Pearson's concentration coefficients ,and stepwise multiple linear regression models predicting CO₂ concentration were carried out.

eg. $\ln CO_2(\mu M) = 6.24 - 0.0266O_2(\%) + 0.130 \ln conductivity(mSm^{-1})$

(Pirkko Kortelainen et al. Sediment respiration and lake trophic are important predictors of large CO_2 evasion from small boreal lakes. Global Change Biology. 2006)

• A Slide Rule for Carbonate Equilibria and Alkalinity in water supplies .

 $CO_2 = 9.70 \times 10^{10} (H^+) \times F(Alk, pH)$

$$\frac{\left[\frac{Alk}{50,000} + (H^+) - \frac{10^{-14}}{(H^+)}\right]}{1 + \frac{11.22 \times 10^{-11}}{(H^+)}} = F(Alk, pH)$$

CO₂ : ppm (H⁺) :hydrogen-ion concentration, mol/L Alk : total alkalinity , ppm CaCO₃

