

Diurnal variations of dissolved oxygen at BFG, Lake Taihu and correlation with eddy CO₂ flux

Qitao Xiao April 26, 2013

1 Background

2 Scientific issues

3 Diurnal variations of dissolved oxygen

4 the correlation between DO and eddy CO_2 flux

◆1 Background

- Dissolved oxygen (DO) level in natural aquatic systems is a highly informative variable.
- Diel DO concentrations measurements are widely used to support examine wholeecosystem primary production and respiration in aquatic systems, particularly in lakes (*Cole et al. 2000; Hanson et al. 2008; Karakaya 2011; Staehr et al. 2010; Staehr and Sand-Jensen 2007*)
- Long-term monitoring of DO dynamics in lakes plays a significant role in quantification of lake metabolism.
- At lesser depths, the DO contents generally changed inversely with water temperature, reflecting solubility lower in summer and higher in winter, O_2 is less soluble and saturates more quickly than soluble CO_2 . Thus, the concentration of O_2 in the saturated water would not change, but the concentration of CO_2 would still change roughly linearly with time.(*Noriko Nakayama et al .2000*)
- The differences in DO concentrations between surface and 2m above the bottom were big, the fluctuation in DO was small during a period of 48h,Oxygen fluxes also showed amarked spatio-temporal variation.(*Xuelu Gao*,2008)

- Oxygen saturation was positively correlated with the log of the distance from shore, biological activity in the lake have obvious impact on the oxygen concentration, and there is a significant negative correlation between pCO_2 and saturation of O_2 in the study lakes.(*Ajaz Karim et al .2011*)
- The organic carbon flux correlated negatively with the overlying water O_2 concentration, The water O_2 concentration explained 43% of the variation in the organic carbon fluxes, At 23 °C, molar CO₂ production and O₂ consumption were equal, At lower temperatures (16 °C), more O₂ was consumed than CO₂ was produced.(*Noriko Nakayama et al. 2000*)
- Vegetated waters in which no flow was visible were the most depleted in O₂, Plant stems contained higher partial pressures of CO₂ and lower partial pressures of O₂ than the overlying air.(*Hamilton et al. 1995*)

Fig.1 The instrument that measure the water quality and its working status at BFG, Lake Taihu

1 The ecosystem metabolism of Lake Taihu

2 The correlation between DO and eddy CO_2 flux

♦ 3 Diurnal variations of dissolved oxygen

Fig.3 The diurnal variations of DO

\diamond 4 The correlation between DO and eddy CO₂ flux

Fig.5 The correlation between DO and eddy CO₂ flux

Fig.8 The correlation between DO and eddy CO_2 flux in day (**a**) and night (**b**) **day:** 6:00 - 18:00**night:** 18:00 - 6:00(tomorrow)

Thank You