

土壤与农业可持续发展国家重点实验室

State Key Laboratory of Soil and Sustainable Agriculture

Increasing N₂O emission

Direct V.S. Indirect N₂O emission

Direct emission

Human sources of nitrous oxide

Indirect emission

IPCC 2008 Methodology

Table 6-17: Direct N2O Emissions from Agricultural Soils by Land Use Type and N Input Type (Tg CO2 Eq.)										
Activity	1990		1995		2000		2005	2006	2007	2008
Cropland	103.0		109.8		115.6		117.9	114.7	116.7	118.3
Mineral Soils	100.2		106.9		112.7		115.0	111.8	113.8	115.4
Synthetic Fertilizer	35.1		39.8		39.0		41.4	39.4	40.3	40.8
Organic Amendments ^a	10.0		10.9		11.2		11.4	11.6	11.8	11.7
Residue N ^b	7.0		7.7		7.8		7.5	7.5	7.5	7.8
Mineralization and										
Asymbiotic Fixation	48.1		48.6		54.7		54.7	53.3	54.2	55.1
Organic Soils	2.9		2.9		2.9		2.9	2.9	2.9	2.9
Grassland	53.7		51.9		50.2		52.6	51.3	50.5	52.1
Synthetic Fertilizer	3.9		4.1		3.8		4.0	4.0	3.9	4.0
PRP Manure	10.3		10.8		10.3		10.5	10.4	10.3	10.4
Managed Manure ^c	0.7		0.7		0.7		0.8	0.8	0.8	0.8
Sewage Sludge	0.3		0.3		0.4		0.5	0.5	0.5	0.5
Residue N ^d	11.6		11.1		10.4		11.1	10.8	10.7	11.0
Mineralization and										
Asymbiotic Fixation	26.9		24.8		24.6		25.6	24.8	24.4	25.4
Total	156.7		161.8		165.8		170.5	166.0	167.2	170.4

Table 6-18: Indirect N2O Emissions from all Land-Use Types (Tg CO2 Eq.)

Activity	1990	1995	2000	2005	2006	2007	2008
Cropland	36.0	33.9	35.7	35.4	35.3	34.1	35.1
Volatilization & Atm.							
Deposition	10.5	11.7	11.9	11.7	12.9	11.3	12.0
Surface Leaching & Run-Off	25.6	22,2	23.8	23.6	22.4	22.7	23.1
Grassland	10.4	9.7	8.0	9.3	9.2	9.0	9.6
Volatilization & Atm.							
Deposition	5.6	5.6	5.1	5.3	5.3	5.2	5.2
Surface Leaching & Run-Off	4.8	4.1	2.9	4.0	3.9	3.8	4.4
Forest Land	+	0.1	0.1	0.1	0.1	0.1	0.1
Volatilization & Atm.							
Deposition	+	+	+	+	+	+	+
Surface Leaching & Run-Off	+	+	0.1	0.1	0.1	0.1	0.1
Settlements	0.3	0.5	0.5	0.6	0.6	0.6	0.6
Volatilization & Atm.							
Deposition	0.1	0.2	0.2	0.2	0.2	0.2	0.2
Surface Leaching & Run-Off	0.2	0.3	0.3	0.4	0.4	0.4	0.4
Total	46.7	44.2	44.3	45.4	45.2	43.8	45.5

Direct V.S. Indirect N₂O emission

indirect N₂O emission account for 46% of the total N₂O emission

Outram, et al. 2012 EST

A significant indirect N₂O emission from agriculture

Production mechanism

Beaulieu et al. 2011 PNAS

Question?

What is the ratio of indirect N_2O emission?

Is it a significant contributor to the agricultural greenhouse gas budget?

Study region

Experiment design

- ➤ 5 ponds sites, 3 river sites, and 1 reservoir site
- dissolved N₂O were collected in 29-mL serum vials previously evacuated according the method of Terry et al. (1981)
- two years' continues sampling every 15-20 days
- ➤ DO、inorganic N、temperature、pH, and Eh of surface water were also measured

N₂O emission rate calculation

➤ Gas exchange across the water—air interface is calculated by the 'stagnant – two - film' (Liss and Slater, 1974, Nature)

$$F_{N2O} = V_{tot} (C_w - C_a / K_H)$$

V_{tot:} the transfer velocity (m s⁻¹) for N₂O across the waterair interface

C_w: the N₂O concentration in the surface water of rivers, ponds, and reservoir (mol m⁻³)

 $C_{a:}$ the N_2O concentration in ambient air (mol m⁻³),

 $K_{H:}$ the dimensionless Henry's Law constant (mol m_a^{-3} mol m_w^{-3})

Climate parameters

Indirect N₂O emission rate

Compared to the references

Total indirect N₂O emission

Water body	Mean N ₂ O emission rates	Water area	Indirect N ₂ O flux ton N year-1		
•	μ g N m ⁻² h ⁻¹	ha			
River	12.9(± 21.8)	32	0.036		
Pond	$4.5(\pm\ 16.3)$	110	0.043		
Reservoir	$7.9(\pm\ 10.0)$	230	0.16		
In Total		373	0.24		

Compared to direct N₂O emission

crop	Total area (ha)	N applications rate (kg N ha ⁻¹)	Emission factor	Direct N ₂ O emission (ton N year ⁻¹)
Rice	1422	329	0.0042	1.96
Cotton	516	228	0.02	2.35
Maize	229	167	0.02	0.76
Soybean	200	18	0.02	0.07
Oil rape	973	227	0.02	4.42
Wheat	712	212	0.02	3.02
Tea	50	41.7	0.02	0.04
Total				12.63

Yang, et al. 2010 SSPN

Compared to N removed by denitrifiation

Compared to the references

What are reasons resulting in low N₂O emission?

$N_2O=18.4[NO_3-N]+0.09Eh+6.1$

-20

Total river discharge

13.5

N concentrations through transport

As a result, N concentration of outflow is very low

Low water velocity

Ponds site:Site1-site 5; river sites: site 6-site 8; reservoir site: site 9

Bouman, 1998 Nature

Decreasing N₂O/N₂ ratio

$$NO_3$$
 $\rightarrow NO_2$ $\rightarrow N_2O \rightarrow N_2\uparrow$

Conclusions

 1 Though water area is high and N input rate is as high as 600 kg N ha⁻¹ per year in our paddy rice dominated watershed, indirect N₂O emission is disproportionately low.

 2 This could have resulted from the limited inputs of N into waterways

 3 Strong reductive conditions as a result of low water velocity might also play a great role.

Question?

- Sampling method?
- Sampling time?
- Sampling site?

Floating chamber method

国家专利号: 201120210689.2

Hourly variated emission rate

The best sampling time

Study region and sample sites

Spatial variation of riverine N₂O emission

Still continuing.....

References

- Xia Y, Li Y, Li X, Guo M, Yan X. Is indirect N2O emission a significant contributor to the agricultural greenhouse gas budget? A case study of a rice-paddy-dominated agricultural watershed in eastern China, Atmospheric Environment, 2013,77:943– 950
- Yan X., Cai Z., Yang R., Ti C., Xia Y. Nitrogen budget and riverine nitrogen output in a rice paddy dominated agricultural watershed in eastern China. Biogeochemistry. 2011, 106: 489-501.
- Xia, Y., Li, Y., Li, X., et al. Diurnal pattern in nitrous oxide emissions from a sewage-enriched river. Chemosphere, 2013, 92: 421-428
- Xia, Y., She D., Yan X. Impact of sampling time on chamberbased measurements of riverine nitrous oxide emissions using spatial stability analysis, **Geoderma**, 2014,214:197-203.

Thanks a lot!

