Data comparison between Meiliangwan (MLW) and Dapukou (DPK) in Lake Taihu

Wei Wang

October 7, 2011
Outline

1. Background
2. Data
3. Comparison analysis
4. Conclusion
5. Discussion
1. Background
EC and microclimate measurement at MLW

- AC
- Datalogger
- Rain gauge
- Water temp
- Microclimate
- EC
- CNR 4 Net Radiometer

Xiao, 2010
EC and microclimate measurement at DPK

Wind Speed and Direction

Temp and Humidity

Rain Gauge

Data Logger

Solar Power

CNR 4 Net Radiometer

Water Temp
2. Data

<table>
<thead>
<tr>
<th></th>
<th>MLW</th>
<th>DPK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eddy Covariance measurement</td>
<td>June 13, 2010~now</td>
<td>August 17, 2011~now</td>
</tr>
<tr>
<td>Meteorological measurement</td>
<td>June 13, 2010~now</td>
<td>August 17, 2011~now</td>
</tr>
<tr>
<td>Net radiation measurement</td>
<td>June 13, 2010~now</td>
<td>December 4, 2010~now</td>
</tr>
<tr>
<td>Water temperature measurement</td>
<td>June 13, 2010~now</td>
<td>August 17, 2011~now</td>
</tr>
</tbody>
</table>
3. Comparison analysis
Eddy Covariance-Sensible heat flux

- Meiliangwan
- Dapukou

Sensible heat flux, W m$^{-2}$

DOY of 2011
Eddy Covariance-Latent heat flux

Latent heat flux, W m$^{-2}$

DOY of 2011
Eddy Covariance-Net ecosystem exchange

Net Ecosystem CO₂ Exchange, mg m⁻² s⁻¹

DOY of 2011

Meiliangwan
Dapukou
Eddy Covariance-Daily total sensible heat flux

![Graph showing daily total sensible heat flux for Meiliangwan and Dapukou over the DOY of 2011.](image)
Eddy Covariance-Daily total latent heat flux
Eddy Covariance-Daily total net ecosystem exchange

![Graph showing daily total net ecosystem CO₂ exchange from DOY 230 to 270 in 2011, with blue line for Meilangwan and red line for Dapukou.](image)
Eddy Covariance-Daily mean CO$_2$ concentration

![Graph showing daily mean CO$_2$ concentration over DOY of 2011 for Meiliangwan and Dapukou.]
Meteorological-Air temperature

- Meiliangwan
- Dapukou

Air temperature, deg C

DOY of 2011

Nanjing University of Information Science & Technology
Meteorological - Relative humidity

Meiliangwan - Dapukou

Relative humidity, %

DOY of 2011
Meteorological-Daily mean air temperature

![Graph showing daily mean air temperature for two locations, Meiliangwan and Dapukou, with data from DOY 230 to 270 of 2011. The graph displays fluctuations in temperature throughout the year.]
Meteorological-Daily mean relative humidity
Meteorological-Daily mean wind speed
Meteorological-Daily total precipitation
Radiation-Daily total reflected short-wave radiation
Radiation-Daily total incident short-wave radiation

![Graph showing daily total incident short-wave radiation over DOY of 2011 for Meiliangwan and Dapukou.]
Radiation-Daily mean albedo
Radiation-Daily total upward long-wave radiation

DOY of 2011

Daily total upward long-wave radiation, MJ·m⁻²·d⁻¹

Meiliangwan
Dapukou
Radiation-Daily total downward long-wave radiation
Water temperature—DPK

![Graph showing water temperature changes over DOY of 2011 for different depths: 20cm, 50cm, 100cm, 150cm, and Lake bottom.](image-url)
Water temperature-20cm depth

![Graph showing water temperature at 20cm depth for different days of the year, with two locations: Meiliangwan and Dapukou.](image)
Water temperature-50cm depth

Water temperature at 50cm depth, degC

DOY of 2011
Water temperature-100cm depth

[Graph showing water temperature over time with two lines representing Meiliangwan and Dapukou]
Water temperature-150cm depth
Water temperature-Lake bottom

![Graph showing water temperature changes over time for Meiliangwan and Dapukou.](image-url)
Water temperature-daily mean at 20cm depth
Water temperature-daily mean at 50cm depth
Water temperature-daily mean at 100cm depth

![Graph showing daily mean water temperature at 100cm depth for two locations: Meiliangwan and Dapukou. The graph plots the temperature in degrees Celsius against the DOY of 2011.]
Water temperature-daily mean at 150cm depth
Water temperature-daily mean at lake bottom

![Graph showing daily mean soil temperature at lake bottom, DOY of 2011. The graph compares Meiliangwan and Dapukou, with temperature values ranging from 20 to 32 degrees Celsius.](image-url)
Investigating the wind speed effect on albedo
Daily mean albedo - All days

All days

daily_albedo_DPK

daily_albedo_MLW
Clearness index

\[k_t = \frac{S}{S_e} \]

- S: incident solar irradiance (W.m\(^{-2}\)) received by underlying surface;
- \(S_e \): the extraterrestrial irradiance (W.m\(^{-2}\));

(Gu et al, 1999)
Daily mean albedo-Clear skies (30 days)
Daily mean albedo - Overcast skies (20 days)
Clear skies-wind speed vs. albedo at MLW
Clear skies-wind speed vs. albedo at DPK
Daily mean wind speed vs. daily mean albedo
Dekad water quality measurement sites
YSI-Water temperature

DOY of 2010
YSI-specific conductivity

![Graph showing YSI-specific conductivity over DOY of 2010 with specific conductivity values ranging from 0.2 to 0.7 ms/cm and DOY values from 116 to 266. The graph includes three curves represented by symbols: 4, 5, and 10.](image)
YSI-pH

![YSI-pH Graph](image)

Graph Title: YSI-pH

Graph Description:
- The graph shows the pH levels from DOY 116 to 266 in 2010.
- Data points are represented by lines marked with markers: 4, 5, and 10.
- The pH scale ranges from 7.0 to 9.5, with increments of 0.5.
- The DOY of 2010 is plotted on the x-axis.
- The pH values are plotted on the y-axis.
YSI-Oxidation-reduction potential (OPR)

![Graph showing ORP over DOY of 2010]

- ORP, mV
- DOY of 2010

Lines marked with 4, 5, and 10
YSI-Turbidity

DOY of 2010

turbidity, NTU

Nanjing University of Information Science & Technology
YSI-Oxidation-Chlorophyll concentration

Chlorophyll concentration, μg/L

DOY of 2010
YSI-Oxidation-Blue-green algae density (BGA)

DOY of 2010

BGA, cells/mL

Nanjing University of Information Science & Technology
YSI-Oxidation-Dissolved oxygen (DO)

![Graph showing dissolved oxygen levels over DOY of 2010 with lines representing different DOYs (4, 5, and 10).]
4. Conclusion

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensible heat flux</td>
<td>MLW ≠ DPK</td>
</tr>
<tr>
<td>Latent heat flux</td>
<td>MLW ≠ DPK</td>
</tr>
<tr>
<td>NEE</td>
<td>MLW ≠ DPK</td>
</tr>
<tr>
<td>CO₂ concentration</td>
<td>MLW < DPK</td>
</tr>
<tr>
<td>Air temperature</td>
<td>MLW ≈ DPK</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>MLW < DPK</td>
</tr>
<tr>
<td>Wind speed</td>
<td>MLW < DPK</td>
</tr>
<tr>
<td>Precipitation</td>
<td>MLW > DPK</td>
</tr>
<tr>
<td>Reflected short-wave radiation</td>
<td>MLW < DPK</td>
</tr>
<tr>
<td>Incident short-wave radiation</td>
<td>MLW ≈ DPK</td>
</tr>
<tr>
<td>Daily mean albedo</td>
<td>MLW < DPK</td>
</tr>
<tr>
<td>Upward long-wave radiation</td>
<td>MLW ≈ DPK</td>
</tr>
<tr>
<td>Downward long-wave radiation</td>
<td>MLW ≈ DPK</td>
</tr>
<tr>
<td>Water temperature</td>
<td>MLW _variation > DPK _variation</td>
</tr>
</tbody>
</table>
• With similar transmittance, high albedo corresponds to low wind at small to moderate solar elevation on hourly scale, but the phenomenon disappears when it comes to diurnal scale.

• The difference between daily mean albedo at MLW and DPK may comes from water quality difference.
5. Discussion

- albedo
 - Hourly scale
 - Diurnal scale
 - Monthly scale

- Solar elevation
- Wind speed
- Atmospheric conditions
- Water quality
- Solar motion

Atmospheric conditions

Water quality

Solar motion

Nanjing University of Information Science & Technology
Look forward to your comments and suggestions