

An Energy Partitioning Perspective on Lake Evaporation Variations to Climate Change

Wei Wang¹, Xuhui Lee^{1,2}, Lei Zhao³, Zachary M. Subin⁴

- 1. Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing, 210044, China;
- 2. School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, 06511, USA
- 3. Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ, 08544, USA
- 4. Princeton Environmental Institute, Princeton University, Princeton, NJ 08544, USA

Outline

- Motivation
- Scientific questions and hypothesis
- Model and data
- Preliminary results
 - Validation of evaporation simulation
 - Interannual variations
 - Energy partitioning vs. air temperature
 - Freshwater flux
 - Evaporation comparison between lake and surrounding land
- Next steps

Motivation

- Hypothesis I the lake evaporation rate will increase as air temperature rises, at a rate of 7% K⁻¹ predicted by the Clausius-Clapeyron equation (Held and Soden, 2006; Huntington, 2006; Wentz et al., 2007; Alessandri et al., 2012, Roderick et al., 2014). Hypothesis II – lake evaporation variabilities are controlled by the variabilities in the surface solar radiation (Ohmura and Wild, 2002; Liu and Zeng, 2004; Fu et al., 2009).
- > Changes in global water evaporation can be decomposed into two parts: one associated with the the net change in radiative flux and the other due to the variability of energy partitioning (Held and Soden, 2006).

Surface energy balance and the Priestley-Taylor (PT) model

$$\beta = \frac{H}{\lambda E} EF = \frac{\lambda E}{R_n - G}$$

$$R_n - G = H + \lambda E$$

$$\lambda E = \alpha \frac{\Delta}{\Delta + \gamma} (R_n - G)$$

$$\beta = \frac{1}{\alpha} \frac{\gamma}{\Delta} + \frac{1}{\alpha} - 1$$

$$EF = \frac{1}{1+\beta}$$

(Priestley and Taylor, 1972; Monteith, 1981; Brutsaert, 1982; Garratt, 1992)

Relationship between β (EF) and $T_{\rm a}$ by PT model

Scientific questions and Hypothesis

- ➤ What is the main driver of the interannual variations in lake evaporation? Air temperature or solar radiation?
- ➤ How are about the mechanisms underlying lake evaporation variability caused by energy partitioning?
- ➤ The lake evaporation interannual variability are primarily explained by air temperature through its effect on energy partitioning (Bowen ratio or evaporative fraction), not by surface solar radiation.

Configuration of the CLM subgrid hierarchy

7

Surface flux solution in CLM4.5-LISSS (Lake, Ice, Snow, and Sediment Simulator)

$$\beta \vec{S}_{g} - \vec{L}_{g} - H_{g} - \lambda E_{g} - G = 0$$

$$H_{g} = -\rho_{atm} C_{p} \frac{\left(\theta_{atm} - T_{g}\right)}{r_{ah}}$$

$$E_{g} = -\frac{\rho_{atm} \left(q_{atm} - q_{sat}^{T_{g}}\right)}{r}$$

Global Lake Database version 2 used in CLM4.5-LISSS

Lake type Number		With depth	Fraction %	<5 m	<5 m fraction %	<10 m	<10 m fraction %
Freshwater	13155	8378	63.69	2247	26.82	6180	73.76
Saline	221	144	65.16	100	69.44	118	81.94
All	13376	8522	63.71	2347	27.54	6298	73.90

Global lake coverage: 2.3 million km².

CLM4.5-LISSS simulations

- ➤ Historical simulation: 1991-2010, monthly, 10-yr spin-up, 0.9° (latitude) x 1.25° (longitude), by Zack Subin, be validated;
- Future simulation: 2005-2100, monthly (primary files), daily (secondary files), 100-yr spin-up, RCP8.5, 0.9° (latitude) x 1.25° (longitude), by Lei Zhao, research;
- ➤ Latent heat: ground + canopy + transpiration Sensible heat: ground + canopy

Why open water evaporation?

Global open lake evaporation: 2.16 x 10¹⁵ kg yr⁻¹ Year round lake evaporation: 2.18 x 10¹⁵ kg yr⁻¹

Validation of monthly evaporation simulations at Lake Taihu

I-CLM_global-CLM_Taihu: 0.90

I-CLM global-Pan: 0.83

RMSE-CLM global-CLM Taihu: 23.10 mm.month⁻¹

RMSE-CLM_global-Pan: 31.93 mm month⁻¹

Validation of annual evaporation simulations at 27 lakes

Interannual variations in global lake mean air temperature and solar radiation

Interannual variations in global lake mean wind speed and precipitation

Interannual variations in global lake mean latent heat, β and EF

β (EF) varying with air temperature every lake-year

eta (EF) varying with air temperature every lake 2005-2100 mean

eta (EF) varying with air temperature 2005-2100 global lake mean

eta difference 2091-2100 mean minus 2006-2015 mean

EF difference 2091-2100 mean minus 2006-2015 mean

Zonal mean of β (EF)

Freshwater flux (Evaporation minus Precipitation) difference 2091-2100 mean minus 2006-2015 mean

Zonal mean of FWF

Evaporation comparison between lake and surrounding land

Partitioning of latent heat flux over land

Next steps

 Intensive validation of CLM4.5-LISSS simulations against in-situ observations.
 Geophysical Research Letters

RESEARCH LETTER

10.1002/2015GL066235

Rapid and highly variable warming of lake surface waters around the globe

Application of the PT model according to the heat flux regimes with corrected PT coefficient.

Boundary-Layer Meteorol On the variability of the Priestley-Taylor coefficient DOI 10.1007/s10546-015-0031-over water bodies

NOTES AND COMMENT Shmuel Assouline, Dan Li, Scott Tyler, Josef Tanny, Shabtai Cohen, Elie

Bou-Zeid,⁴ Marc Parlange,⁵ and Gabriel G. Katul⁶

On the Application of the Priestley–Taylor Relation on Sub-daily Time Scales