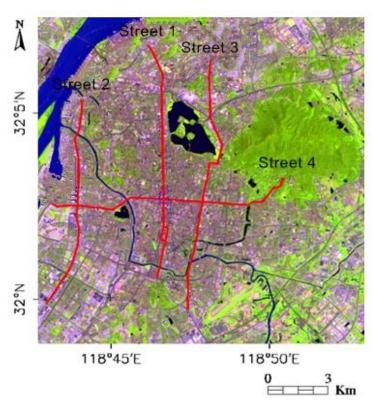
Street level CO₂ concentrations in the city of Nanjing: an update

Yale-NUIST Center of Atmospheric Environment Yale Univ. and Nanjing Univ. of Infor. Sci. & Tech. www.yale.edu www.nuist.edu.cn

Wang Shumin 2014.7.11

Outline


- Introduction
- Methods
- Results
 Spatial and temporal patterns
 Impact factor
- Summary

1. Introduction

- Urban area is less than 2.4% of the world's total land area (*Potere*, *D*. *et al*, 2007), but it contributes more than 80% of the global CO₂ emission(*Turner*, *I.I. et al*, 1994).
- In 1998, Idso, C.D. et al. found "urban CO₂ dome" phenomenon for the first time in Phoenix, United States (*Idso*, C.D. et al, 1998).
- Koerner,B. et al. found vehicles were the largest contributor (79.9%) of "CO₂ dome" in Phoenix(*Koerner*, *B. et al*,2002).

- Nanjing is the capital city of Jiangsu Province, the city's chief area is 6,587,02 square kilometers, total household population is 6,384,792(*Nanjing Statistical Yearbook,2013*). Nanjing is next to Suzhou in the total carbon emission in Jiangsu Province(*Xiao xiang,2011*), it is imminent to develop a low-carbon economy.
- Therefore, quantitative interpretation the street-level CO₂ spatial and temporal patterns in Nanjing is benefitial to the city emission reduction.

2. Method

Instrument: LI -840A CO₂ /H₂O gas analyzer

Time: Jun 6, 9, 14, 15, 17, 2013 (Summer)

Dec 20, 21, 23, 26, 2013 (Winter)

Apr 4, 5, 8, 9, 2014 (Spring)

06:00 07:30 11:30 17:30(17:00) 22:00

Speed: 30km/h

Fig. 1. Map of Nanjing city showing the streets of data obtained

3. Results

3.1 Spatial and temporal patterns

3.1.1 CO₂ concentration of urban traffic trunk

Table. 1. Mean CO₂ concentrations (ppm) for different seasons

Season	Time	Ave±1σ	Min	Max
	Weekday	457.9±51.9	382.4	1403.2
Summer	Weekend	467.8 ± 53.5	387.0	1276.4
	Total	461.9 ± 52.8	382.4	1403.2
	Weekday	506.3 ± 61.6	411.4	1306.4
Winter	Weekend	482.4 ± 42.5	418.2	1023.9
	Total	500.7 ± 58.6	411.4	1306.4
	Weekday	487.7 ± 50.4	395.9	997.6
Spring	Weekend	456.2 ± 35.5	396.0	756.3
	Total	480.6 ± 49.2	395.9	997.6

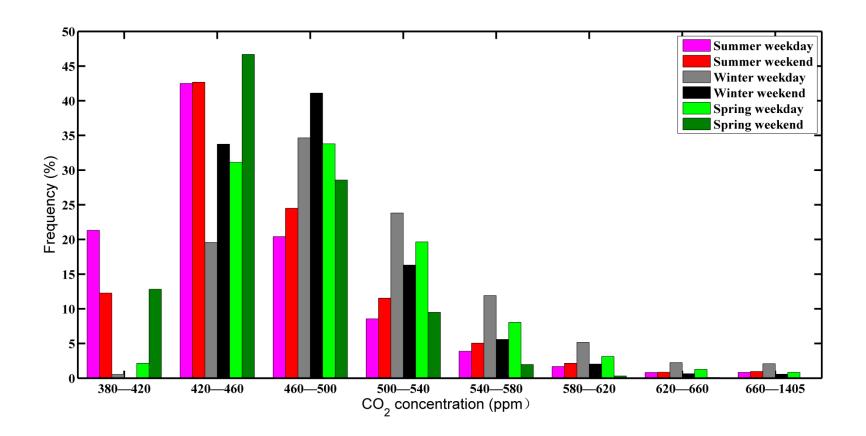


Fig. 2. Frequency distributions of CO₂ concentrations (ppm) for different seasons

Table. 2. Mean CO₂ concentrations (ppm) for different streets

Street	Summer Ave±1σ		Winter Ave $\pm 1\sigma$		Spring Ave±1σ	
	Weekday	Weekend	Weekday	Weekend	Weekday	Weekend
Street 1	464.7 ± 54.8	480.9 ± 55.5	507.7 ± 53.6	490.5 ± 48.1	491.2±51.4	459.5 ± 34.6
Street 2	442.7 ± 44.1	454.0 ± 53.1	483.8 ± 48.1	463.8 ± 32.8	466.4±43.9	442.9 ± 30.1
Street 3	462.8 ± 52.9	466.4±56.6	518.6±61.6	493.4±44.2	498.1 ± 47.5	464.0 ± 39.3
Street 4	461.7 ± 52.2	469.7±46.1	511.6±73.1	477.3 ± 34.6	487.9 ± 52.0	458.6±34.1

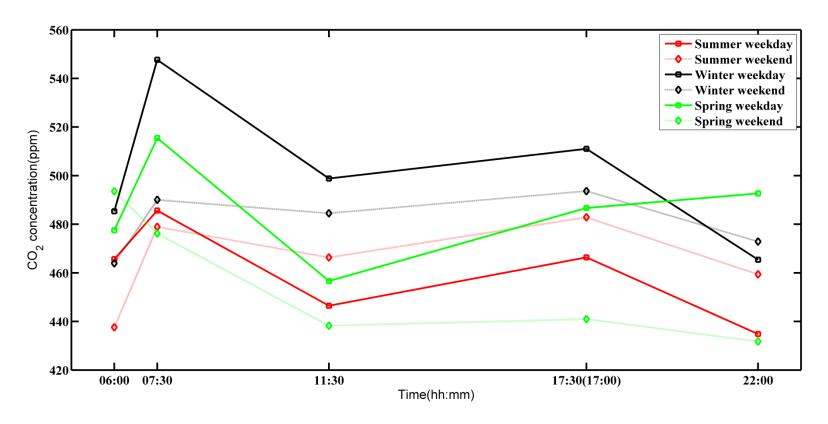


Fig. 3. Diurnal variation of CO₂ concentrations (ppm) for different seasons

3.1.2 CO₂ concentration of urban center and urban forest

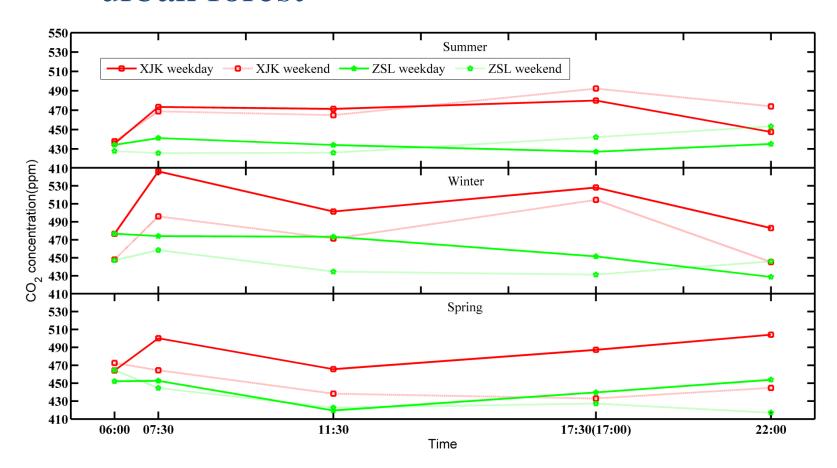


Fig. 4(a). Diurnal variation of CO₂ concentrations (ppm) of XJK and ZSL in different seasons

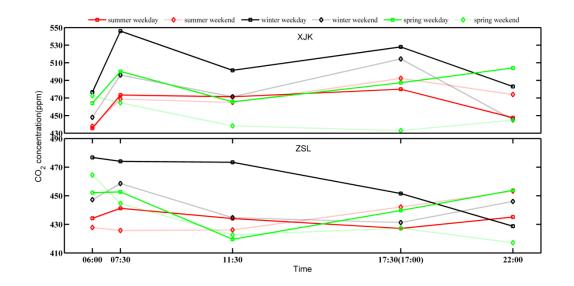
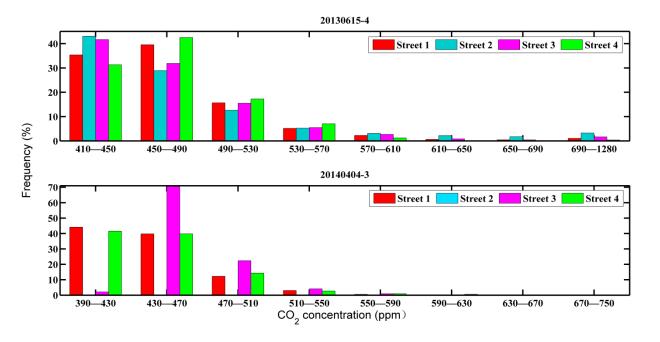



Fig. 4(b). Diurnal variation of CO₂ concentrations(ppm)
Of XJK and ZSL
in different seasons

Table. 3. Diurnal variation range of XJK and ZSL in different seasons

	Diurnal variation range					
Season	XJK weekday	XJK weekend	ZSL weekday	ZSL weekend		
Summer	44.37	54.45	14.07	27.54		
Winter	69.38	69.05	48.06	27.28		
Spring	39.99	39.70	34.27	47.42		

3.2 Impact factor3.2.1 wind

June 15, 2013 wind: 17:30 – 18:00 86.0° 18:00 – 18:30 91.6°

April 4, 2014 wind: 11:30 – 12:00 86.3° 12:00 – 12:30 81.0°

Fig. 5. Frequency distributions of CO₂ concentrations for each street when the wind from the East.

3.2.2 Vehicle speed

Table. 3. The relationship between vehicle speed(m/s) and CO₂ concentration(ppm) of four streets

<u> </u>	Sur	Summer		Winter		Spring	
Street -	\mathbb{R}^2	P	\mathbb{R}^2	P	R ²	P	
Street 1	0.31	0.0034	0.21	0.044	0.084	0.22	
Street 2	0.30	0.0053	0.40	0.0028	0.15	0.10	
Street 3	0.46	0.00017	0.40	0.0029	0.28	0.016	
Street 4	0.19	0.025	0.40	0.0029	0.16	0.085	
Total	0.28	< 0.0001	0.27	< 0.0001	0.11	0.0034	

Table. 4. The relationship between vehicle speed(m/s) and CO₂ concentration(ppm) of five times

Time —	Sun	Summer		Winter		Spring	
	R ²	P	\mathbb{R}^2	P	\mathbb{R}^2	P	
6:00	0.089	0.23	0.00017	0.96	0.020	0.60	
7:30	0.049	0.36	0.34	0.017	0.26	0.046	
11:30	0.24	0.027	0.025	0.56	0.012	0.70	
17:30	0.089	0.16	0.11	0.20	0.40	0.0087	
22:00	0.074	0.25	0.044	0.44	0.056	0.38	

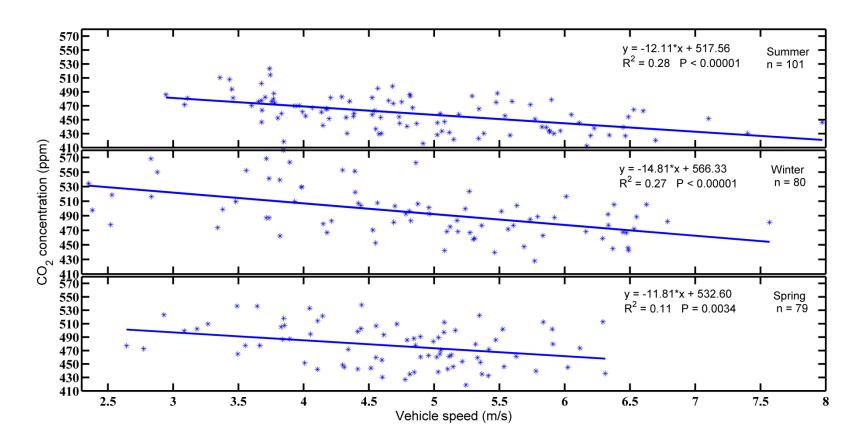


Fig. 6. The relationship between vehicle speed(m/s) and CO₂ concentration(ppm) of three seasons

3.2.3 NDVI

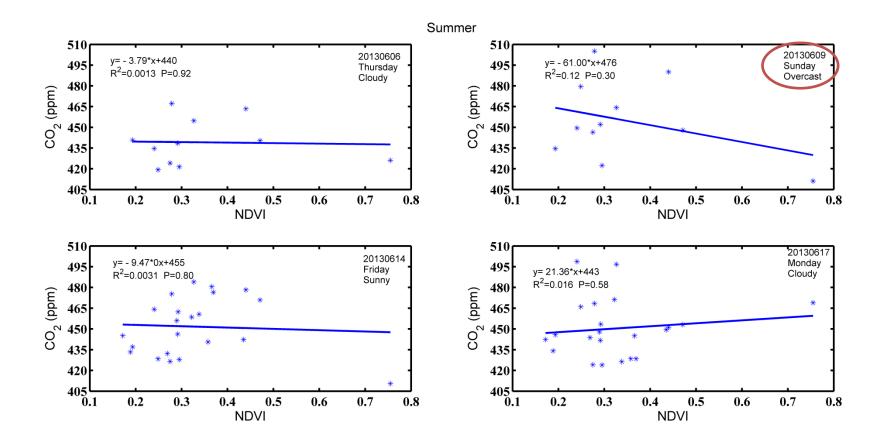


Fig. 7. The relationship between NDVI and CO₂ concentration(ppm) of Summer

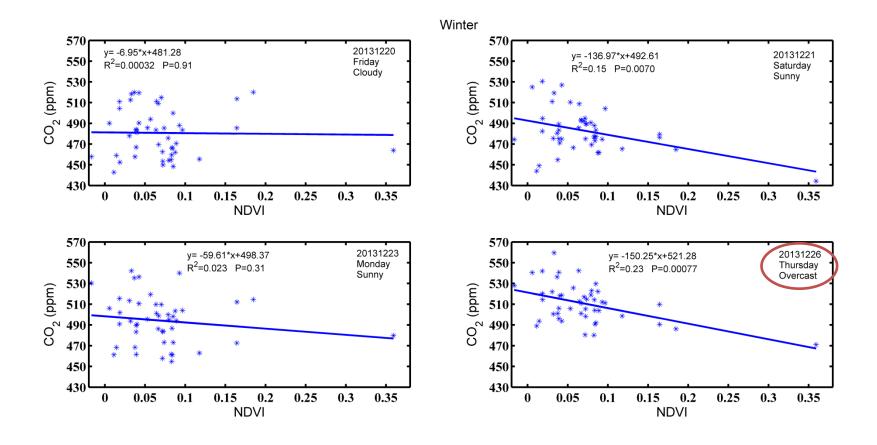


Fig. 8. The relationship between NDVI and CO₂ concentration(ppm) of Winter

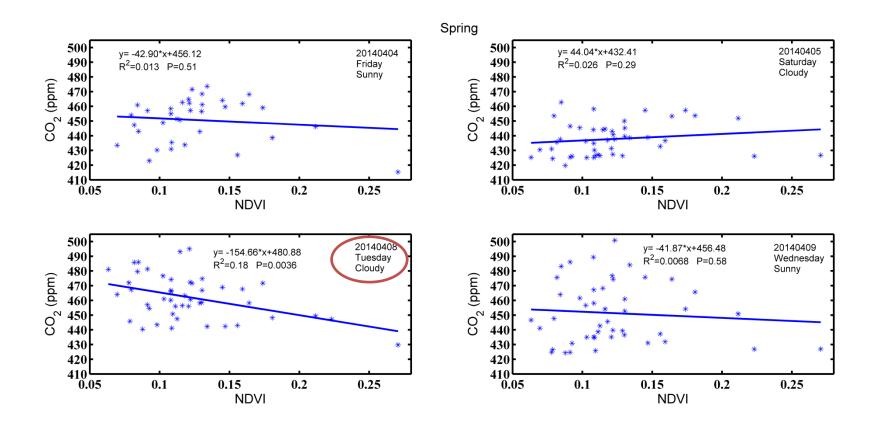


Fig. 9. The relationship between NDVI and CO₂ concentration(ppm) of Spring

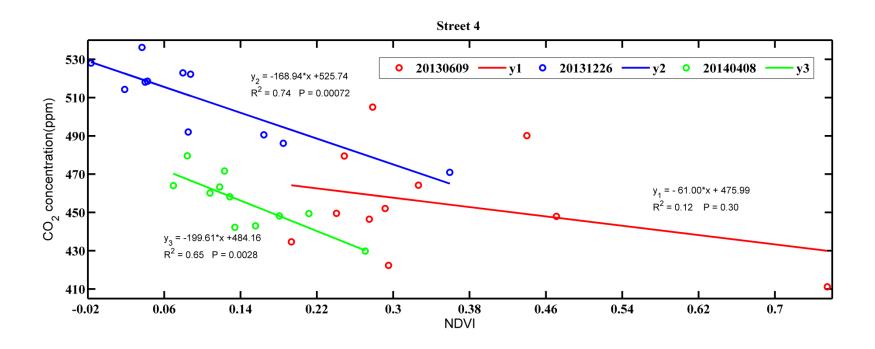


Fig. 10. The relationship between NDVI and CO₂ concentration(ppm) of Street 4 in three seasons

3.2.4 NDVI and vehicle speed

Table. 5. The relationship among NDVI vehicle speed(m/s) and CO₂ concentration(ppm) of Winter

Winter (n=46)	With NDVI	With V	With NDVI and V
a	-150.25	-2.04	-148.08
b	/	/	-1.94
c	521.28	523.74	533.53
\mathbb{R}^2	0.23	0.072	0.29
P	0.00077	0.071	0.00055

Table. 6. The relationship among NDVI vehicle speed(m/s) and CO₂ concentration(ppm) of Spring

Spring (n=46)	With NDVI	With V	With NDVI and V
a	-154.65	-2.46	-151.87
b	/	/	-2.30
c	480.88	474.95	492.61
\mathbb{R}^2	0.18	0.052	0.22
P	0.0036	0.13	0.0045

$$CO_2 = a*NDVI + c$$
 $CO_2 = a*V + c$ $CO_2 = a*NDVI + b*V + c$

4. Summary

- In summer, CO₂ concentrations at weekends are higher than that of weekdays. The pattern reverses in the winter and spring. To sum it, Winter mean CO₂ concentrations are the highest, while Summer the lowest.
- During the observation, mean CO₂ concentrations on Street 2 are the lowest; Mean CO₂ concentrations on Street 1 are the highest in Summer, while Street 3 the highest in Winter and Spring.
- During the observation, mean CO₂ concentrations on Street level show obvious double peak on weekdays.

- Diurnal patterns of CO₂ concentrations in XJK and ZSL are different in different seasons.
- CO₂ concentrations have certain relationship with wind, NDVI and vehicle speed.

Thank you