Understanding human influence on climate change in China

Ying Sun
(National Climate Center)

Outline

• Introduction

• Human influence on climate change since 1950s
 – Mean temperature
 – Extreme temperature
 – Extreme precipitation

• Attribution of high-impact extreme events
 – Heat wave
 – Cold surge
 – Heavy precipitation
Outline

- **Introduction**
 - Human influence on climate change since 1950s
 - Mean temperature
 - Extreme temperature
 - Extreme precipitation
 - Attribution of high-impact extreme events
 - Heat wave
 - Cold surge
 - Heavy precipitation
Human influence on climate change
Key issue of IPCC

- **IPCC FAR (1990)**: Human use of fossil fuels had substantially increased the concentration of atmospheric greenhouse gases, leading to an enhanced warming effect and resulting in a warming of the Earth’s surface.

- **IPCC SAR (1995)**: Global warming was “unlikely to be entirely caused by nature” and that human activities have had a "discernable" impact on the global climate system.

- **IPCC TAR (2001)**: Most of the warming observed over the last 50 years is likely to have been due to the increase in greenhouse gas concentrations.

- **IPCC AR4 (2007)**: Most of the warming observed since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations.

- **IPCC AR5 (2013)**: It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century.

- **IPCC AR6 (2021)**: It is unequivocal that human influence has warmed the atmosphere, ocean and land.
Detection and attribution of climate change (Hasselmann方法的后续发展)
Understand how much human activities have caused the change in climate

- Since 1950s, global warming is unequivocal.
- What is the reason? How much is the contribution from human activities, such as greenhouse gases and aerosols? How much will this affect future climate change?

D&A of Climate Change:

Attribution of long-term changes:
Identify the relative contribution from external forcing and internal variability of climate system

Attribution of extreme events:
Whether or not anthropogenic forcings change the probability of extreme events
D&A of Climate Change
Category I: Long-term changes

- are observed changes consistent with
 - expected responses to forcings
 - inconsistent with alternative explanations

![Graphs showing temperature anomaly over time with different forcings: All forcing, Solar + volcanic, GHG forcing.](IPCC WG1 AR5 Fig TS-9)
Optimal Fingerprinting Method

\[Y = X\beta + \varepsilon \]

Evaluate scaling factors

Evaluate residuals
Category II: Attrition of high-impact extreme events
(Focused on an individual extreme event but not long-term changes)

• How much anthropogenic climate change has contributed to the change of the probability (risk) or magnitude (severity) of observed event and how often similar events will happen in future.

• Main methods
 – Coupled Model Approaches
 – Sea Surface Temperature Forced Atmosphere Only Model Approaches
 – Analogue-Based Approaches
 – Empirical Approaches

Current literature stresses risk ratio \(RR = \frac{p_1}{p_0} \): The probability of the event in the “real” world\((p_1) \) /the probability of the event in the “natural” world\((p_0) \). How much have human activities increased the occurrence of event

Older literature used concept of Fractional Attributable Risk (FAR) \(= 1 - \frac{p_0}{p_1} \). This quantifies the fraction of events attributable to human caused climate change.
Outline

- Introduction
- Human influence on climate change since 1950s
 - Mean temperature
 - Extreme temperature
 - Extreme precipitation
- Attribution of high-impact extreme events
 - Heat wave
 - Cold surge
 - Heavy precipitation
Mean temperature: Anthropogenic forcings, dominated by greenhouse gas emissions, are the main drivers for the observed warming.

- **Greenhouse gases**: contribute about 90% of warming
- **Other anthropogenic forcings**: cooling effects
- **Urbanization effects**: exacerbating the GHGs induced warming

Sun et al. 2016, Nature Climate Change; Sun et al. 2016, BAMS
Extreme Temperature: Human influence is the main driver for the changes in frequency, intensity and duration of extreme temperature (CMIP5)

(Yin et al. IJOC; Lu et al. GRL; 2018)
Extreme Temperature: Newest observation and CMIP6 show the dominant role of GHGs in the changes, while the contribution of aerosols is small.
Extreme temperature: Contribution from urbanization can be detected in the frequency of extreme temperature (CMIP5 and CMIP6)

- GHGs: contribute more than 90% of change in warm and cold days
- GHGs and urbanization signal are detected in the nighttime extreme temperature

Sun et al. 2019, GRL; Lu, Sun* et al. 2016, GRL; Yin, Sun* et al. IJOC
Extreme Temperature: Human influence is the main driver for the changes of extreme temperature in the Tibetan Plateau (Anthropogenic signal can be detected at a small regional scale)

1958-2017:
Warm extremes: More intense and more frequent
Cold extremes: Less intense and less frequent

Warming in most extreme temperature indices are larger than China and Eastern China

(Yin et al. 2019 Environ. Res. Lett.)
Extreme Precipitation: Human influence on extreme precipitation is still uncertain

Anthropogenic signal cannot be detected (field significance test)

Anthropogenic signal can be detected in extreme precipitation, but ALL signal cannot be detected (optimal fingerprinting method)
Extreme precipitation: Anthropogenic signal can be detected in the changes of extreme precipitation in mid-high latitudes of Asia

- A few indices show high signal-to-noise ratio
- Anthropogenic signal is detected in mid-and high-latitudes
- But cannot be detected in China extreme precipitation

(Dong et al. 2020. Journal of Climate)
Outline

• Introduction

• Human influence on climate change since 1950s
 – Mean temperature
 – Extreme temperature
 – Extreme precipitation

• Attribution of high-impact extreme events
 – Heat wave
 – Cold surge
 – Heavy precipitation
Attribution of extreme events: Increasing contribution from China

EXPLAINING EXTREME EVENTS OF 2015
From A Climate Perspective

TABLE OF CONTENTS

2/28 to 6/15

EXPLAINING Extreme Events Of 2019 from a Climate Perspective

TABLE OF CONTENTS

1. Increased Risk of the 2019 Alaskan July Fires due to Anthropogenic Activity 51
2. Anthropogenic Influence on Hurricane Dorian’s Extreme Rainfall 59
3. Quantifying Human-Induced Dynamic and Thermodynamic Contributions to Severe Cold Outbreaks Like November 2019 in the Eastern United States 517
4. Anthropogenic Influences on Extreme Annual Brooklynflow into Chesapeake Bay from the Susquehanna River 525
5. Anthropogenic Contribution to the Rainfall Associated with the 2019 Ottawa River Flood 533
6. Extremely Warm Days in the United Kingdom in Winter 2018/19 539
7. CMIP5 Model-Based Assessment of Anthropogenic Influence on the Long-Sustained Western Cape Drought over 2015–19 545
8. Has Global Warming Contributed to the Largest Number of Typhoons Affecting South Korea in September 2018? 551
9. Are Long-Term Changes in Mixed Layer Depth Influencing North Pacific Marine Invertebrates? 559
10. Was the Extended Rainy Winter 2018/19 over the Middle and Lower Reaches of the Yangtze River Driven by Anthropogenic Forcing? 567
11. Roles of Anthropogenic Forcing and Natural Variability in the Record-Breaking Low Sunspot Cycle in January-February 2019 over the Middle-Lower Yangtze Plain 575
12. Attribution of the Extreme Drought-related Risk of Wildfires in Spring 2019 over Southwest China 583
13. Attribution of 2019 Extreme Spring-early Summer Hot Drought over Yunnan in Southwest China 591
14. Anthropogenic Influence on 2019 May-June Extremely Low Precipitation in Southwestern China 597
15. Anthropogenic Influences on Heavy Precipitation during the 2019 Extremely Wet Rainy Season in Southern China 599
Heat wave: Human influence has increased the probability of extreme high-temperature events (daytime, nighttime, compound events)

Two-step and one-step attribution methods
Human influence has increased the probability of heat wave
Conclusions from multiple studies on attribution of high temperature are consistent

2013 Heat wave in eastern China

2018 Nighttime heat wave in northeastern China (HadGEM3-A)

(Sun et al. 2014, Nature Climate Change; Ren et al. BAMS, 2019)
Cold surge: Human influence has decreased the probability of extreme low-temperature events

TNn anomalies in the 2015/2016 winter

Human influence decreased the probability of a cold surge occurrence in China.

- The 2015/2016 winter cold surge would have been much stronger without anthropogenic induced warming.
- Human influence may have respectively reduced the occurrence of such a cold event by 89%, 73%, and 69%.

(Sun et al, 2018, BAMS; Qian et al. 2018, BAMS)
Heavy Precipitation: There is still uncertainty in human influence on the occurrence probability of regional heavy precipitation

- Increase the probability of RX1day, but decrease the probability of Rx28day

 Zhang et al. 2020, BAMS

- Increase the probability of June heavy precipitation in Southern China

 Sun et al. 2018, BAMS

2018 Heavy precipitation in central part of China (Sichuan Province)

2017 Heavy precipitation in southern China
Human activities have increased the probability 18 times of the warm temperature events

CanESM2: PALL=2.02%, PNAT= 0.11% RR=18.4

HadGEM3: PALL=6.67%, PNAT=0.38% RR=17.5

(Sun et al., 2020, Bull. of the American Meteor. Soc.)
Uncertainty in relative contribution of human activities and atmospheric circulation

2018 Warm Spring in Eastern China

Influence from human activities and local circulation anomalies

Circulation effects

Human influence

Hadley极端事件归因系统的数据研究表明：人类活动使得2018年春季高温这样的极端事件发生概率增加了10倍；而异常的局地反气旋环流使得这一事件的发生概率增加了约两倍。

(Lu et al., Advances in Atmospheric Sciences, 2020)
Observational-constrained future projection
(attribution constrained and model-bias adjustment model results)

• In 2030s, the 2013-like heat wave will become once-a-year event (Different methods and models show consistent conclusion)

Sun et al. 2014, Nature Climate Change, Earth’s Future
Conclusion: Current understanding of human influence on climate change in China

<table>
<thead>
<tr>
<th>Chang in indicator/Phenomenon</th>
<th>Human contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes in mean temperature and precipitation</td>
<td></td>
</tr>
<tr>
<td>Mean temperature</td>
<td>Very likely the main driver for the observed increase</td>
</tr>
<tr>
<td>Mean precipitation</td>
<td>Lack of change in observations</td>
</tr>
<tr>
<td>Warm/hot extremes: Frequency, intensity and duration</td>
<td>Very likely the main driver for the observed increase</td>
</tr>
<tr>
<td>Cold extremes: Frequency, intensity and duration</td>
<td>Very likely the main driver for the observed decrease</td>
</tr>
<tr>
<td>Heavy precipitation: Frequency, intensity and/or amount</td>
<td>Human influence for an increase in heavy precipitation emerging</td>
</tr>
<tr>
<td>Drought</td>
<td>Limited evidence for increase in droughts</td>
</tr>
<tr>
<td>Attribution of extreme events</td>
<td></td>
</tr>
<tr>
<td>High temperature events</td>
<td>Very likely increase in occurrence probability</td>
</tr>
<tr>
<td>Cold temperature events</td>
<td>Very likely decrease in occurrence probability</td>
</tr>
<tr>
<td>Heavy precipitation events</td>
<td>Mixed signal (increase in probability for some events but decrease for other events)</td>
</tr>
</tbody>
</table>
Thanks!