Understanding human influence on climate change in China

Ying Sun

(National Climate Center)

Sun, Y., Zhang, X. B., Ding, Y. H., Chen, D. L., Qin, D. H., Zhai, P. M., 2021: Understanding human influence on climate change in China, National Science Review, DOI:10.1093/nsr/nwab113.

Outline

- Introduction
- Human influence on climate change since 1950s
 - Mean temperature
 - Extreme temperature
 - Extreme precipitation
- Attribution of high-impact extreme events
 - Heat wave
 - Cold surge
 - Heavy precipitation

Outline

• Introduction

- Human influence on climate change since 1950s
 - Mean temperature
 - Extreme temperature
 - Extreme precipitation
- Attribution of high-impact extreme events
 - Heat wave
 - Cold surge
 - Heavy precipitation

Human influence on climate change Key issue of IPCC

- **IPCC FAR (1990)** : Human use of fossil fuels had substantially increased the concentration of atmospheric greenhouse gases, leading to an enhanced warming effect and resulting in a warming of the Earth's surface
- IPCC SAR (1995) : Global warming was "unlikely to be entirely caused by nature" and that human activities have had a "discernable" impact on the global climate system.
- **IPCC TAR (2001):** Most of the warming observed over the last 50 years is likely to have been due to the increase in greenhouse gas concentrations.
- IPCC AR4 (2007) : Most of the warming observed since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations.
- IPCC AR5 (2013) : It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century.
- **IPCC AR6 (2021)** : It is unequivocal that human influence has warmed the atmosphere, ocean and land.

Detection and attribution of climate change (Hasselmann方法的后续发展) Understand how much human activities have caused the change in climate

- Since 1950s, global warming is unequivocal.
- What is the reason? How much is the contribution from human activities, such as greenhouse gases and aerosols? How much will this affect future climate change?

D&A of Climate Change:

Attribution of long-term changes: Identify the relative contribution from external forcing and internal variability of climate system

Attribution of extreme events: Whether or not anthropogenic forcings change the probability of extreme events

D&A of Climate Change Category I: Long-term changes All forcing

- changes consistent with
- expected
 responses to
 forcings
 inconsistent with
 alternative
 explanations

Year

IPCC WG1 AR5 Fig TS-9

Category II: Attrition of high-impact extreme events

(Focused on an individual extreme event but not long-term change Attribution Steps

- How much anthropogenic climate change has contributed to the change of the probability (risk) or magnitude (severity) of observed event and how often similar events will happen in future.
- Main methods
 - Coupled Model Approaches
 - Sea Surface Temperature Forced Atmosphere Only Model Approaches
 - Analogue-Based Approaches
 - Empirical Approaches

Current literature stresses risk ratio $(RR=p_1/p_0)$: The probability of the event in the "real" world(p₁) /the probability of the event in the "natural" world(p₀) . How much have human activities increased the occurrence of event Older literature used concept of Fractional Attributable Risk (FAR)=1-p₀/p₁. This quantifies the fraction of events attributable to human caused climate change.

Outline

• Introduction

- Human influence on climate change since 1950s
 - Mean temperature
 - Extreme temperature
 - Extreme precipitation
- Attribution of high-impact extreme events
 - Heat wave
 - Cold surge
 - Heavy precipitation

Mean temperature: Anthropogenic forcings, dominated by greenhouse gas emissions, are the main drivers for the observed warming

- Greenhouse gases: contribute about 90% of warming
- Other anthropogenic forcings: cooling effects
- Urbanization effects: exacerbating the GHGs induced warming

Sun et al. 2016, Nature Climate Change; Sun et al. 2016, BAMS

Extreme Temperature: Human influence is the main driver for the changes in frequency, intensity and duration of extreme temperature (CMIP5)

(Yin et al. IJOC; Lu et al. GRL; 2018)

Extreme Temperature: Newest observation and CMIP6 show the dominant role of GHGs in the changes, while the contribution of aerosols is small

Extreme temperature: Contribution from urbanization can be detected in the frequency of extreme temperature (CMIP5 and CMIP6)

Sun et al. 2019, GRL; Lu, Sun* et al. 2016, GRL; Yin, Sun* et al. IJOC

- GHGs: contribute more than 90% of change in warm and cold days
- GHGs and urbanization signal are detected in the nighttime extreme temperature

Extreme Temperature: Human influence is the main driver for the changes of extreme temperature in the Tibetan Plateau (Anthropogenic signal can be detected at a small regional scale)

Warming in most extreme temperature indices are larger than China and Eastern China

(Yin et al. 2019 Environ. Res. Lett.)

1958-2017:

Warm extremes: More intense and more frequent Cold extremes: Less intense and less frequent

Extreme Precipitation: Human influence on extreme precipitation is still uncertain

Anthropogenic signal can be detected in extreme precipitation, but ALL signal cannot be detected (optimal fingerprinting method)

Extreme precipitation: Anthropogenic signal can be detected in the changes of

extreme precipitation in mid-high latitudes of Asia

- ✓ A few indices show high signal-to-noise ratio
- ✓ Anthropogenic signal is detected in mid-and high-latitudes
- ✓ But cannot be detected in China extreme precipitation

(Dong et al. 2020. Journal of Climate)

Outline

- Introduction
- Human influence on climate change since 1950s
 - Mean temperature
 - Extreme temperature
 - Extreme precipitation
- Attribution of high-impact extreme events
 - Heat wave
 - Cold surge
 - Heavy precipitation

Attribution of extreme events: Increasing contribution from China

EXPLAINING EXTREME EVENTS OF 2015

From A Climate Perspective

TABLE OF CONTENTS

b	stract	11
	Introduction to Explaining Extreme Events of 2015 from a Climate Perspective	1
	Multimodel Assessment of Anthropogenic Influence on Record Global and Regional Warmth During 2015	4
	What History Tells Us About 2015 U.S. Daily Rainfall Extremes	9
	An Assessment of the Role of Anthropogenic Climate Change in the Alaska Fire Season of 2015	14
	The 2014/15 Snowpack Drought in Washington State and its Climate Forcing	
	In Tide's Way: Southeast Florida's September 2015 Sunny-day Flood	. 25
	Extreme Eastern U.S. Winter of 2015 Not Symptomatic of Climate Change	31
	The Role of Arctic Sea Ice and Sea Surface Temperatures on the Cold 2015 February Over North America	. 36
	The 2015 Extreme Drought in Western Canada	. 42
0.	Human Contribution to the Record Sunshine of Winter 2014/15 in the United Kingdom	47
۱.	The Role of Anthropogenic Warming in 2015 Central European Heat Waves	51
2.	The 2015 European Heat Wave	
3.	The Late Onset of the 2015 Wet Season in Nigeria	. 63
4.	Human Influences on Heat-Related Health Indicators During the 2015 Egyptian Heat Wave	. 70
5.	Assessing the Contributions of Local and East Pacific Warming to the 2015 Droughts in Ethiopia and Southern Africa	. 75
5.	The Deadly Combination of Heat and Humidity in India and Pakistan in Summer 2015	81
7.	The Heavy Precipitation Event of December 2015 in Chennai, India	. 87
8.	Attribution of Extreme Rainfall in Southeast China During May 2015	. 92
9.	Record-Breaking Heat in Northwest China in July 2015: Analysis of the Severity and Underlying Causes	. 97
0.	Human Influence on the 2015 Extreme High Temperature Events in Western China	102
١.	A Persistent Japanese Heat Wave in Early August 2015: Roles of Natural Variability and Human-Induced Warming	107
2.	Climate Change and El Niño Increase Likelihood of Indonesian Heat and Drought	113
3.	Southern Australia's Warmest October on Record: The Role of ENSO and Climate Change	118
4.	What Caused the Record-Breaking Heat Across Australia in October 2015?	122
5.	The Roles of Climate Change and El Niño in the Record Low Rainfall in October 2015	-
	in Tasmania, Australia	127
6.	Influences of Natural Variability and Anthropogenic Forcing on the Extreme 2015	
	Accumulated Cyclone Energy in the Western North Pacific	131
7.	Record Low Northern Hemisphere Sea Ice Extent in March 2015	136
•	Commence of Base day Constant	1.4.1

Explaining Extreme Events of 2019 from a Climate Perspective

Special Supplement to the Bulletine the American Micro or logical Vol. 102, No. T. January 2021

2/28 to 6/15

TABLE OF CONTENTS

010 Alackan July Fires due to Anthronogenis A

	increased kisk of the 2015 Alaskan suly files due to Anthropogenic Activity St
2.	Anthropogenic Influence on Hurricane Dorian's Extreme Rainfall
3.	Quantifying Human-Induced Dynamic and Thermodynamic Contributions to Severe Cold Outbreaks Like November 2019 in the Eastern United States517
4.	Anthropogenic Influences on Extreme Annual Streamflow into Chesapeake Bay from the Susquehanna River
5.	Anthropogenic Contribution to the Rainfall Associated with the 2019 Ottawa River Flood
6.	Extremely Warm Days in the United Kingdom in Winter 2018/19
7.	CMIP6 Model-Based Assessment of Anthropogenic Influence on the Long Sustained Western Cape Drought over 2015–19
8.	Has Global Warming Contributed to the Largest Number of Typhoons Affecting South Korea in September 2019?
9.	Are Long-Term Changes in Mixed Layer Depth Influencing North Pacific Marine Heatwaves?
10.	Was the Extended Rainy Winter 2018/19 over the Middle and Lower Reaches of the Yangtze River Driven by Anthropogenic Forcing?
11.	Roles of Anthropogenic Forcing and Natural Variability in the Record- Breaking Low Sunshine Event in January–February 2019 over the Middle-Lower Yangtze Plain
12.	Attribution of the Extreme Drought-Related Risk of Wildfires in Spring 2019 over Southwest China
13.	Attribution of 2019 Extreme Spring-Early Summer Hot Drought over Yunnan in Southwestern China
14.	Anthropogenic Influence on 2019 May–June Extremely Low Precipitation in Southwestern China
6.02	

Heat wave: Human influence has increased the probability of extreme high-temperature events (daytime, nighttime, compound events)

2

1.5

0.5

0

-0.5

2013 Heat wave in eastern China

- Two-step and one-step attribution methods
- Human influence has increased the probability of heat wave
- Conclusions from multiple studies on attribution of high temperature are consistent

2018 Nighttime heat wave in northeastern China (HadGEM3-A) 130°E 2.5 Obe 1961-2013 Obs 1961-2013 Historical 1961-2 Historical 1961-201 0.0 -2.0 -1.0 1.0 2,0 Anomaly of TNx30 (°C) d. HistoricalNatExt 2018 HistoricalNatExt 2018 HistoricalExt 2018 0.8 \$ 0.6 Ž 1.0 8 0.4 0.0 02 -1.0 0.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 Anomaly of TNx30 (°C) Return Periods(year)

Z500 & a850

(Sun et al. 2014, Nature Climate Change; Ren et al. BAMS, 2019)

Cold surge: Human influence has decreased the probability of extreme low-temperature events

d) NC

01 GEV(%)

Human influence decreased the probability of a cold surge occurrence in China.

- The 2015/2016 winter cold surge would have been without much stronger anthropogenic induced warming.
- Human influence may have respectively reduced the occurrence of such a cold event by 89%, 73%, and 69%.

(Sun et al, 2018, BAMS; Qian et al. 2018, BAMS)

Heavy Precipitation: There is still uncertainty in human influence on the occurrence probability of regional heavy precipitation

2018 Heavy precipitation in central part of China (Sichuan Province)

> Increase the probability of RX1day, but decrease the probability of Rx28day Zhang et al. 2020, BAMS

2017 Heavy precipitation in southern China

• Increase the probability of June heavy precipitation in Southern China

Sun et al. 2018, BAMS

Framing issues: Multi-model attribution of the warmest spring of 2018 in central Asia (CanESM2 and HadGEM3-A)

✓ Human activities have increased the probability 18 times of the warm temperature events
✓ CanESM2: PALL=2.02%, PNAT= 0.11% RR=18.4
✓ HadGEM3: PALL=6.67%, PNAT=0.38% RR=17.5

(Sun et al., 2020, Bull. of the American Meteor. Soc.)

Uncertainty in relative contribution of human activities and atmospheric circulation

National Cli

气倔

Influence from human activities and local circulation anomalies

Hadley极端事件归因系统的数据研究表明:人类活动使得2018年春季高温这样的极端事件发生概率增加了10倍;而异常的局地反气旋环流使得这一事件的发生概率增加了约两倍。

Observational-constrained future projection (attribution constrained and model-bias adjustment model results)

4.0

Global warming condition(°C)

Sun et al. 2014, Nature Climate Change, Earth' s Future

Conclusion: Current understanding of human influence on climate change in China

Chang in indicator/Phenomenon	Human contribution			
Changes in mean temperature and precipitation				
Mean temperature	Very likely the main driver for the observed increase			
Mean precipitation	Lack of change in observations			
Warm/hot extremes: Frequency, intensity	Very likely the main driver for the observed increase			
and duration				
Cold extremes: Frequency, intensity and	Very likely the main driver for the observed decrease			
duration				
Heavy precipitation: Frequency, intensity	Human influence for an increase in heavy precipitation emerging			
and/or amount				
Drought	Limited evidence for increase in droughts			
Attribution of extreme events				
High temperature events	Very likely increase in occurrence probability			
Cold temperature events	Very likely decrease in occurrence probability			
Heavy precipitation events	Mixed signal (increase in probability for some events but decrease for other events)			

Thanks!