

Yale-NUIST Center on Atmospheric Environment

IMPACT OF ENTRAINMENT ON OZONE IN THE ATMOSPHERIC BOUNDARY LAYER

REPORTER: QI HUIWEN

2017/6/2

1. Background

2. Method

3. Results & Discussion

- **4.** Conclusions
- **5. Future Work**

MOTIVATION

Question: How does the high O_3 at the 2-4 layer influence O_3 in the atmospheric boundary layer? How much?

BACKGROUND

Surface ozone (O₃)

- Ozone is produced through a series of complicated chemical reactions involving NOx, VOCs and solar ultraviolet radiation (secondary pollutant);
- High levels of O₃ are harmful to human health, vegetation ecosystems, and crop yields;
- Important greenhouse gas;
- ***** One of the major sources of hydrogen radicals.

BACKGROUND

Three major sources of O₃ in the atmospheric **boundary layer (ABL)**

— Local production via photochemical reactions

Fig.2. Schematic overview of the different terms that affect the e.g., Penkett and Brice, (1986), Dickerson et al., (1995), evolution of ozone. (Ouwersloot et al.,2012)

— Regional transport

Li et al.,(2002)

e.g., Zheng Yongguang et al., 2005; Oltmans et al., 2004

— Vertical transport from upper levels (entrainment)

As showed previously, the enhanced O₃ from upper levels (like from stratosphere) (e.g., Danielsen et al., 1968; Logan et al., 1985; Levye et al. (1985); Moody et al.(1995); Oltmans et al., 2004) may impose important impact on O₃ in the ABL.

As compared to chemical reactions and horizontal transport, the impact of entrainment on ozone in the ABL is not well quantified.

BACKGROUND

Entrainment

- Transition area between ABL(turbulent area) and free atmosphere(without turbulent)
- Sessential to the development and evolution of ABL
- Very limited observations
- An important passage of matter and energy exchange between the ABL and the free atmosphere, and has an important impact on the heat, water vapor, CO₂ and O₃ in the ABL.

As compared to heat, water vapor, and CO_2 , the study of impact of entrainment on O_3 om the ABL is very limited.

OBJECTIVES

- To simulate diurnal variation of O₃ in the atmospheric boundary layer with an atmospheric boundary layer chemistry model (CLASS model).
- To quantify the relative contributions of entrainment and local chemical production to O₃ in the ABL under different jump conditions.
- To quantify the relative contributions of entrainment and local chemical reaction to O₃ in the ABL under different emission (i.e., NO_x and VOCs) conditions.

METHOD

Chemistry Land-surface Atmosphere Soil Slab (CLASS) Model

1. Representation of boundary layer dynamics

Fig.3. Sketch of the profiles of virtual potential temperature and heat flux in a zero-order and first-order jump model

METHOD

Fig.4. Conceptual representation of the vertical profiles of specific humidity (q), potential temperature(θ) and, as an example, nitrogen dioxide(NO2) and ozone(O3).

The governing equation of $\langle \phi \rangle$ are derived from 1-D Reynolds averaged Navier-Stokes equation

 $\frac{\partial \langle \phi \rangle}{\partial t} = \frac{\overline{w' \phi'}_{s} - \overline{w' \phi'}_{h}}{h} + S_{\phi}.$ (2)
(1)
(1)

 $\emptyset = \{\theta, q, S\};$ "s" and "h" denote the surface and mixed-layer height; $w'\emptyset'$ denotes a turbulent flux at the surface(s) and the entrainment zone(h); S_{\emptyset} contains additional source and sink terms

METHOD: CLASS/CHEMISTRY

TT 1 1 1	C1 · 1	, •	1	1 •	• 1	•	
I ohla I	[homical	ragetion	cchama	1100d 1n	numarical	avnarimant	
Table I.	Chemical	reaction	SUILLILL	useu m	nuncheat		
							(-

Name	Chemical equation			Reaction rate constant
R1	$O_3 + hv$	\rightarrow	$O^{1D} + O_2$	$3.83 \times 10^{-5} \cdot e^{-\frac{0.575}{\cos(\chi)}}$
R2	$O^{1D} + H_2O$	\rightarrow	2 OH	$1.63 \times 10^{-10} \cdot e^{\frac{60}{T}}$
R3	$O^{1D} + N_2$	\rightarrow	$O_3 + REST$	$2.15 \times 10^{-11} \cdot e^{\frac{110}{T}}$
R4	$O^{1D} + O_2$	\rightarrow	O ₃	$3.30 \times 10^{-11} \cdot e^{\frac{55}{T}}$
R5	$NO_2 + hv$	\rightarrow	$NO + O_3 + REST$	$1.67 \times 10^{-2} \cdot e^{-\frac{0.5/5}{\cos(\chi)}}$
R6	$CH_2O + hv$	\rightarrow	$HO_2 + REST$	$1.47 \times 10^{-4} \cdot e^{-\frac{0.575}{\cos(\chi)}}$
R7	OH + CO	\rightarrow	$HO_2 + CO_2 + REST$	2.40×10^{-13}
R8	$OH + CH_4$	\rightarrow	$CH_3O_2 + REST$	$2.45 \times 10^{-12} \cdot e^{\frac{-1775}{T}}$
R9	$OH + C_5H_8$	\rightarrow	RO ₂	1.00×10^{-10}
R10	OH + MVK	\rightarrow	$HO_2 + CH_2O + REST$	2.40×10^{-11}
R11	$HO_2 + NO$	\rightarrow	$OH + NO_2$	$3.50 \times 10^{-12} \cdot e^{\frac{250}{T}}$
R12	$CH_3O_2 + NO$	\rightarrow	$HO_2 + NO_2 + CH_2O + REST$	$2.80 \times 10^{-12} \cdot e^{\frac{300}{T}}$
R13	$RO_2 + NO$	\rightarrow	$HO_2 + NO_2 + CH_2O + MVK$	1.00×10^{-11}
R14	$OH + CH_2O$	\rightarrow	$HO_2 + REST$	$5.50 \times 10^{-12} \cdot e^{\frac{125}{T}}$
R15	2 HO_2	\rightarrow	$H_2O_2 + O_2$	k^1
R16	$CH_3O_2 + HO_2$	\rightarrow	REST	$4.10 \times 10^{-13} \cdot e^{\frac{750}{T}}$
R17	$RO_2 + HO_2$	\rightarrow	REST	1.50×10^{-11}
R18	$OH + NO_2$	\rightarrow	HNO ₃	$3.50 \times 10^{-12} \cdot e^{\frac{340}{T}}$
R19	$NO + O_3$	\rightarrow	$NO_2 + O_2$	$3.00 \times 10^{-12} \cdot e^{-\frac{1500}{T}}$
R20	$OH + HO_2$	\rightarrow	$H_2O + O_2$	$4.80 \times 10^{-11} \cdot e^{\frac{250}{T}}$
R21	$OH + H_2O_2$	\rightarrow	$H_2O + HO_2$	$2.90 \times 10^{-12} \cdot e^{\frac{-160}{T}}$
R22	$NO + NO_3$	\rightarrow	2 NO ₂	$1.80 \times 10^{-11} \cdot e^{\frac{110}{T}}$
R23	$NO_2 + O_3$	\rightarrow	$NO_3 + O_2$	$1.40 \times 10^{-13} \cdot e^{\frac{-2470}{T}}$
R24	$NO_2 + NO_3$	\rightarrow	N ₂ O ₅	k^2
R25	N_2O_5	\rightarrow	$NO_2 + NO_3$	k^3
R26	$N_2O_5 + H_2O$	\rightarrow	2 HNO ₃	2.50×10^{-22}
R27	$N_2O_5 + 2 H_2O$	\rightarrow	$2 \text{ HNO}_3 + \text{H}_2\text{O}$	1.80×10^{-39}
R28	$\mathrm{HO}_2 + \mathrm{O}_3$	\rightarrow	OH + 2 O ₂	$2.03 \times 10^{-16} \cdot \left(\frac{T}{300}\right)^{4.57} \cdot e^{\frac{693}{T}}$

 $\frac{1}{k} = (k_1 + k_2) \cdot (1 + k_3), \ k_1 = 2.2 \times 10^{-13} \cdot e^{\frac{600}{T}}, \ k_2 = 1.9 \times 10^{-33} \cdot e^{\frac{980}{T}} \cdot c_{air}, \ k_3 = 1 + 1.4 \times 10^{-21} \cdot e^{\frac{2200}{T}} \cdot c_{H_2O}, \ \frac{2}{k} = 0.35 \cdot (k_1 \cdot k_2) / (k_1 + k_2), \ k_1 = 3.6 \times 10^{-30} \cdot \left(\frac{T}{300}\right)^{-4.1} \cdot c_{air}, \ k_2 = 1.9 \times 10^{-12} \cdot \left(\frac{T}{300}\right)^{0.2}, \ \frac{2}{k} = 0.35 \cdot (k_1 \cdot k_2) / (k_1 + k_2), \ k_1 = 1.3 \times 10^{-3} \cdot \left(\frac{T}{300}\right)^{-3.5} \cdot e^{\frac{-11000}{T}} \cdot c_{air}, \ k_2 = 9.7 \times 10^{14} \cdot \left(\frac{T}{300}\right)^{0.1} \cdot e^{\frac{-11080}{T}}.$

METHOD: OBS. SITE

Fig.5. Location of TAP MUN in Hong Kong

Table 2. Prescribed Met ICs used for the numerical experiment

属性	值↔
1. 初始混合层高度 h[m]	200+
 水平速度散度 ∇×V_h[s⁻¹] 	5× 10 ⁻⁶
3. 地转风 <i>U_g,V_g</i> [ms ⁻¹]	(0,0)*
4. 地表感热通量	$0.1\sin(\pi t/t_d)$
5. 夹卷/地表热通量比率 $\beta = -\overline{w' heta'_h} / \overline{w' heta'_s}$ [-]	0.2
6. 初始混合层位温 <θ>[K]	288 🚽
7. 初始自由对流层位温 $ heta_{FT}$ [K]	289*
8. 自由大气位温递减率 $\gamma_{ heta}$ [Km ⁻¹]	0.006+
9. 地表潜热通量	$0.03 \sin(\pi t/t_d)$
10. 初始混合层比湿 < q >[gkg ⁻¹]	5.3⊷
11. 初始自由对流层比湿 q _{FT} [gkg ⁻¹]	4.5⊷
12. 自由对流层比湿递减率 γ_q [gkg ⁻¹ m ⁻¹]	-0.0012

Table 3 Prescribed chemical species (ppbv) and surface fluxes (emission, ppbv m s^{-1})

	O ₃	NO	NO ₂	CH ₄	ISO	СО	H ₂ O ₂	MVK⊷
ل <u>م</u>								
<s> [ppb]</s>	46	0	6	1724	2	100	0.1	1.3↩
S _{FT} [ppb]	15	0.5	0	1724	0	100	0.1	1.3
<u>w's'</u> [μgm ⁻² s ⁻¹]	0	0.004	а	0	b	0	0	0 ⊷

a NO₂的沉降通量用-v_cC_{NO2}计算,其中 <u>v_c</u>=0.015ms⁻¹+

b $\overline{w'ISO'}=0.05\sin(\pi t/t_d)$

Fig.6. Comparison of simulated with observed NO,NO₂,NOx and O₃ at Tap Mun on Mar. 6, 2013

Fig.7. The PBL height(h), potential temperature (θ), and specific humidity (q) predicted by CLASS.

Case 1	Initial O ₃ [ppb]	Δ <i>O</i> ₃ [ppb]
Control	46	0
Physics	46	15

Fig.8. Time evolution of the O3 mixing ratio obtained with the mixed layer model with and without chemical reactions

S

Chem: 19 ppbv (65-46) Phy: 13ppbv (78-65)

Case 2	Initial O ₃ [ppb]	ΔO_3 [ppb]
Physics1	46	0
Physics2	46	5
Physics3	46	10
Physics4	46	15
Physics5	46	20
Physics6	46	25

Fig.9. The CLASS-simulated O₃ at different O₃ jumps.

Table 5. CLASS-simulated peak O₃ at different O₃ jumps

Case	O ₃ jump (ppb)	Simulated O ₃ peak (ppb)
Physics1	0	66
Physics2	5	70
Physics3	10	74
Physics4	15	78
Physics5	20	82
Physics6	25	86

Every 5-ppb O₃ jump causes about 4-ppb increase of O₃ in the ABL

Fig.10. NO,NO₂ and HNO₃ simulated by CLASS model with different O₃ jumps

Fig.11. Similar to Figure 10 but for Isoprene and OH radicals

Impact of different emissions (i.e., NO_x and VOCs) conditions

Fig.12. EKMA (Empirical Kinetic Modeling Approach) plot

	O ₃	NO	NO ₂	CH ₄	ISO	СО	H ₂ O ₂	MVK⊷
ل <u>ه</u>								
<s> [ppb]</s>	46	0	6	1724	60	100	0.1	1.3
S _{FT} [ppb]	15	0.5	0	1724	0	100	0.1	1.3
<u>w's'</u> [μgm ⁻² s ⁻¹]	0	0.004	а	0	b	0	0	0 ₊≀

a NO₂的沉降通量用-v_cC_{NO2}计算,其中 <u>v</u>_c=0.015ms⁻¹,_/

b $\overline{w'ISO'}=0.05\sin(\pi t/t_d)$

VOC控制(塔门): VOCs/NOx=0.55<8 NOx控制: ISO变成60ppb, VOCs/NOx>8

÷,

Fig.13. CLASS-simulated O₃ for different VOCs/NOx

	1	2	3
ΔO_3 (ppbv)	10	15	20

Fig.14. CLASS-simulated O₃ for different VOCs/NOx and O3 jump

Table 6. under different NO and ISO surface flux

species	control	case1	case2	case3	case4
NO flux (ppbv)	0.004	0.005	0.006	0.004	0.004
ISO flux (ppbv)	0.05	0.05	0.05	0.06	0.07

CONCLUSIONS

* The impact of entrainment on O3 in the ABL is quantified by the CLASS model successfully.

The entrainment plays a competitive role in the change of O3 in the ABL as compared to the local chemical reactions.

* The impact of entrainment on the O3 in the ABL is highly associated with O3 jumps.

* The relative contributions of entrainment versus chemical reactions to O3 in the ABL is also related to the emissions especially to the ratios of NOx/VOC.

NEXT STEPS

- Refine the simulations and experiments
- Complete statistical evaluations of the CLASS simulations.
- **Developing one or two manuscript(s)**

THANK YOU FOR YOUR ATTENTION !