

CH₄ flux from an aquaculture zone in a subtropical lake

PU Yini 2020/07/24

Introduction

D Methods

C Results and discussion

Conclusions

Introduction

Aquaculture systems are major anthropogenic sources of CH_4 emission: 6.04 \pm 1.17 Tg CH_4 yr⁻¹, and China contributes 68% of global budgets (Yuan *et al.*, 2019).

Rice-fish systems 40 30 CH4 flux (mgCH4 m⁻² h⁻¹) 20 Æ 10 feeding port 0 Rice-fish Extensive Semi-Intensive intensive CH₄ emission from intensive systems is negligible Intensive systems Semi-intensive systems Yuan et al., 2019 stocking density aquaculture site management practices (aeration)

Extensive systems

- The presence of aquatic plants in aquaculture systems will increase CH₄ emission by 14% ~ 128% (Ma *et al.*, 2018; Hu *et al.*, 2016; Liu *et al.*, 2016).
- Dredging will greatly reduce the sediment C substrate for CH₄ production, and drainage will destroy the anaerobic environment in sediments (Hu *et al.*, 2016).

For lakes, ebullition ratio: 40%~60% (Bastviken et al., 2004)

Whether the disturbance of intensive aquatic animal activities will affect the pathway of CH_4 emission?

Objective 2: To determine the ratio of CH₄ ebullition from aquaculture zones of lakes

The water DO concentration in aquaculture systems: >5 mg L⁻¹

In aquaculture zones of lakes, there is no need to aerate because of sufficient DO.

In small closed aquaculture ponds, DO dynamics caused by artificial aeration is the key factor affecting CH_4 emission.

Objective 3: To examine the driving factors that control CH_4 dynamics

 CH_4/C inputs

For natural wetlands, CH₄/NEP: 3.3%

Objective 4: To quantify the ratio of CH_4 emission to total carbon inputs from aquaculture zones of lakes

02 Methods

2.1 Site description

Observation time: 2018.04~2018.12

2.2 Aquaculture management practices

Management practices	Time	
Quicklime sterilization	Mid January	
Young crabs stocking	Mid January	
Freshwater prawn fry stocking	Late January	
Plant <i>Elodea nuttallii</i>	Мау	
Harvest freshwater shrimps	June	
Giant river prawn fry stocking	July	
Harvest crabs and shrimps	Mid September-late December	

Feeds	Application rate (t ha ⁻¹)	Contents of C and N		
		C (%)	N (%)	
Pellet feed	3	21.4	5.12	
Trash fish	54	8.41	2.69	
Corn seeds	9	46.4	1.35	

The crabs were fed once daily at 4:00~6:00 a.m.

2.3 Eddy covariance data processing

2.4 CH₄ ebullition partitioning

Principle

- Local scalar similarity between the CH₄ concentration and other reference scalars, eg: Ta or q.
- Similar and dissimilar fluctuation components are related to diffusive and ebullitive CH₄ fluxes, respectively.

$$W_x^{j,i} = \int_{-\infty}^{\infty} x(t) \psi_{j,i}(t) \mathrm{d}t,$$

Iwata et al., 2018

Choice of the reference scalar

(1) Environmental condition

 (km^2) $(mg \cdot L^{-1})$ $(mg \cdot L^{-1})$ $(mg \cdot L^{-1})$ $(mg \cdot L^{-1})$

DOC

Area

TN

ΤP

DO

Dongtaihu Bay 131 7.09 1.12 0.06 9.95

(2) CH_4 emission

CH₄ flux: 2.07 µg/(m²s)

(3) CH₄ ebullition ratio

Overall: 57.3%

BFG: 49% (Xiao et al., 2017)

(4) Factors influencing CH₄ flux

0

A M

J A

Month

J

S

0

N D

Production

Thermal disturbance (water-side convection)

Mechanical disturbance (wind forcing)

Water depth

Photosynthesis

(5) C budgets

System	CH_4	NEP	Feeds input	Harvest
	(g C m ⁻²)			
Dongtaihu Bay	34.21	233.80	935.94	26.85

CH₄/C inputs: 2.99%

(6) Comparison with other published literatures

04 Conclusions

- > The CH₄ flux from the aquaculture zone of East Lake Taihu was 1.45 μ g/(m²·s), which is between the values of semi-intensive systems and extensive systems.
- The ratio of CH₄ ebullition from the aquaculture zone of East Lake Taihu was about 57%, which means the disturbance of intensive aquatic animal activities will not affect the pathway of CH₄ emission.
- Different CH₄ emission process is influenced by different environmental variables. The superposition effect made sediment temperature and thermal disturbance become the driving factors of CH₄ dynamics. Besides, O₂ produced by photosynthesis of aquatic plants may have a greater impact on CH₄ emission compared to productivity.
- > In spite of large amount of organic C input, the ratio of CH_4 to total carbon inputs from the aquaculture zone of East Lake Taihu was still close to that of natural wetlands.

Thanks for your attention!