

Eddy covariance fluxes of CO₂ and CH₄ at the DTH site, Lake Taihu

PU Yini 2018/07/20

□ Introduction

Materials and methods

D Preliminary results

Conclusions

□ Future work

01 Introduction

- ◆ Inland lakes are an important source of atmospheric CO₂ and CH₄. It is estimated that inland lakes emit 0.14 Pg CO₂ yr⁻¹ and 8-48 Tg CH₄ yr⁻¹, respectively(Cole *et al.*, 1994; Bastviken *et al.*, 2004).
- ♦ In recent decades, studies on global lake carbon cycle only focused on natural lakes, ignoring aquaculture lakes which are heavily disrupted by humans.
- Studies have shown that water quality and physical and chemical properties of sediment in aquaculture water bodies would undergo great changes due to excessive feed inputs, animal residues and excretion. Therefore, GHG emission from aquaculture lakes may differ from other natural lakes significantly.
- ♦ In 2016, the area of aquaculture lakes was 9908.2 km², accounting for 12.2% of the total lake area in China. Clarifying the GHG emission characteristics of this special type of lakes is of great significance for evaluating the contribution of lakes to global carbon emission accurately and deepening the understanding of the impact of human activities on global warming.

02 Materials and methods

2.1 Site description

DTH site 31°03'33"N, 120°28'30"E

- Observation start time: 6 November 2017
- Water depth: about 1.2 m
- Instrument erection height: 3 m above water surface
- CO_2/H_2O gas analyzer: Campbell EC150
- CH_4 gas analyzer: LI-COR 7700

Aquatic vegetation species

Submerged macrophyte:

• Elodea nuttallii(伊乐藻)

Literature:

- Potamogeton malaianus(马来眼子菜)
- Ceratophyllum demersum(金鱼藻)
- Vallisneria spiralis(苦草)

Floating-leafed vegetation:

- Trapa bispinosa(菱)
- Nymphoides peltatum(荇菜)
- Hydrocharis dubia(水鳖)

2.2 Data processing for CO₂

2.3 Data processing for CH₄

03 Preliminary results

2017.11.6-2018.7.4

CO₂ flux at other four sites

White boxplot: daytime(solar elevation angle>0) ; Black boxplot: nighttime(solar elevation angle<0); Red boxplot: the whole month

Correlation analysis between CO₂ uptake flux and meteorological factors

	Air	Water	Wind	Solar radiation	
	temperature	temperature	speed	daytime	nighttime
CO ₂ uptake flux	-0.19**	-0.28**	-0.28**	-0.10**	-0.11

Correlation analysis between CO₂ emission flux and meteorological factors

	Air temperature	Water temperature	Wind speed
CO ₂ emission flux	0.13**	0.16**	0.15**

CO₂ uptake flux

CO₂ uptake flux versus meteorological factors and bin-averaged plot¹⁴

3.2 CH₄ flux

2018.4.4-2018.7.7

Boxplot of CH₄ flux in different months

White boxplot: daytime(solar elevation angle>0) ; Black boxplot: nighttime(solar elevation angle<0); Red boxplot: the whole month

Correlation analysis between CH₄ flux and meteorological factors

	Air temperature	Water temperature	Sediment temperature	Air pressure	Wind speed
CH ₄ flux	0.55**	0.67**	0.75**	-0.62**	-0.03

CH₄ flux versus air pressure and bin-averaged plot

04 Conclusions

- The DTH site is a atmospheric CO₂ sink during observation.
 CO₂ flux shows obvious diurnal pattern since March.
- Temperature, wind speed and solar radiation have significant correlation with the half-hourly CO₂ flux.
- > There is no diurnal cycle of CH_4 flux during observation.
- \succ Temperature and air pressure control CH₄ emission.

Measure parameters in water quality and sediment every 2 weeks.

Read more papers about GHG fluxes in lakes and aquaculture water bodies to get new inspiration and ideas.

Thanks for your attention!