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Fig.1 Comparison between the observed and the model-predicted
surface flux QE and friction velocity from DOY 183 to 213,2012 Yale
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Motivation 2

Wind and submerged aquatic vegetation
influence bio-optical properties in large shallow
Lake Taihu, China

By Xiaohan Liu, Yunlin Zhang, Yan Yin, et al.

JOURNAL OF GEOPHYSICAL RESEARCH:BIOGEOSCIENCES
Impact factor:3.021(2012)
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Figure 1. Location and conditions of the phytoplankton-dominated (PD) and macrophyte-dominated
(MD) sampling sites in Lake Taihu. (a) Location of the long-term PD sites 1-5 in Meiliang Bay and
MD sites 68 in Xukou Bay. Location of the short-term, high-frequency site in (b) Meiliang Bay and
(c) Xukou Bay. In situ photos of the short-term, high-frequency sites in (d) Meiliang Bay and (e) Xukou
Bay.
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Figure 3. Box plot of seasonal vanations of five physical and chemical parameters related to light atten-

uation n the (a—¢) PD megion and the (al-el) MD regon. Data for ae-poe(350) in August and November

2007 were not available. The mean values from sprng to autumn were presented for the comparison of

these three 5AV growth seasons with winter, the non-gmwth season. The box s determined by the

25th and 75th percentiles, and values for median (horeontal line) and mean (diamond) are also included.
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Figure 7(b). Linear model between K, (PAR) and the 10min antecedent
average wind speed in the PD region; Two linear relationships were fitted:
including the highest wind speed of 12.65ms'(encircled dashed line) and
excluding the highest wind speed(solid line). Yale
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Sensitivity test

» 1.Using observed friction velocity to drive lake model and
calculate @ .(BFG 2012.7,Tuned-summer)

» 2.Changing extinction coefficient from 3 to 7.
(BFG 2012.1, Tuned-winter®)

> 3.Set extinction coefficient as function of n=2334-¢""*  jg

horizontal wind speed.
(MLW 2012,DOY:76-103,192-220,275-304,20-49, Deng et al.*)
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Tablel Parameter Settings

n p Ke (descale) ZOh ZOm ZOq

(m1) (%) (m2/s) (m) (m) (m)
Deng et al. 5 63.2 0.02 1.9X106 3.3X104 3.9X108
Tuned-Summer 2.5  39.3 0.014 8X10° 1.9X10% 3.9X10%
Tuned-Winter 3 45.1 0.02 8X10®° 1.9X107 3.9X10%
Tuned-Winter* 7 75.3 0.02 8X10° 1.9X107 3.9X10%
Dengetal* f(u) 1—@ %"  0.02 1.9X10®¢ 3.3X10% 3.9X10°8

(T, >277.15K)

i

Ty Ke-Deng  Ke-tuned
(KD etal. (m2/s)
(m2/s)
276<T,,<277.15 0.1 6X10°

T,,<276 10000Ke  1X10° Yale
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Results

> Test 1
> Test 2
> Test 3
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Test 1

BFG 30min-mean wind rose 2012.1 BFG 30min-mean wind rose 2012.4
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Fig.2 Wind rose for Jan., Apr., Jul., Oct. on 2012 at BFG
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BFG 30min-mean wind rose 2012.7.1-7.20 BFG 30min-mean wind rose 2012.7.21-7.31
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Fig.3 Wind rose and linear fitting between horizontal wind speed
and friction velocity on July,2012 at BFG Yale
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Fig.5 Comparison between the observed and the model-predicted
surface temperature and surface flux QH from DOY 183 to

213,2012 at BFG
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Fig.6Comparison between the observed and the model-predicted
surface flux QE from DOY 183 to 213,2012 at BFG
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Fig.7 Comparison between the observed and the model-predicted
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Fig.8 Comparison between the observed and the model-predicted
surface flux QE and friction velocity from DOY 1to 31,2012 at Yale
BFG "N
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Fig.9 BFG_2011.12.13-12.15
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Fig.10 BFG_2013.1.5
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Fig.11Extinction coefficient from DOY 76 to 103,2012 at MLW
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Fig.12 Comparison between the observed and the model-predicted

surface temperature and surface flux QH from DOY 76 to
103,2012 at MLW
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Fig.13 Comparison between the observed and the model-predicted
surface flux QE and friction velocity from DOY 76 to 103,2012 at Yale
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Test 3-Surlnmelr
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Fig.14 Extinction coefficient from DOY 192 to 220,2012 at MLW
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Fig.16 Comparison between the observed and the model-predicted
surface flux QE and friction velocity from DOY 192 to 220,2012 Yale
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Test 3-Autumn
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Fig.17 Extinction coefficient from DOY 275 to 304,2012 at MLW
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Fig.19 Comparison between the observed and the model-predicted
surface flux QE and friction velocity from DOY 275 to 304,2012 Yale
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Test 3-Winter
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Fig.20 Extinction coefficient from DOY 20 to 49,2012 at MLW
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surface temperature and surface flux QH from DOY 20 to
49,2012 at MLW
29

Ya]e




]
—obs — DB

tuned

A My fh LT

%0 25

Fig.22 Comparison between the observed and the model-predicted
surface flux QE and friction velocity from DOY 20 to 49,2012 at Yale

35
DOY

MLW

40

|
45

50




Conclusion

O These three groups of sensitivity tests haven’t got the
expected results.

O Not only wind but also other factors have impact on the
simulation of latent heat flux. It needs further analysis.

O The inter-annual variability of water quality varies greatly,
even in the same period and at the same site, therefore finding
the relationship between extinction coefficient and wind
combining with the amount of vegetation may help to increase
the applicability of lake model.

O The combination of the horizontal wind speed and the
extinction coefficient improved the simulation results of the latent
heat flux.
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On-going work

O Further tuning the simulation results and to find some

valid and convincing reasons.
O Read more literature and gaining more knowledge about

this aspect to accomplish a manuscript as soon as possible.
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