

# A discusion on the paper "Droughts in a warming climate: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI)"

2015, Mohammad Amin Asadi Zarch et al.

Reporter: PanCongcong

2016/3/25

# Outline

- Introduction
- Materials and Methods
- Results
- Discussion and Conclusions

# Introduction

This problem becomes far more complicated during periods of droughts. It is particularly in this context that there are serious concerns about the impacts of climate change on our water security, socioeconomic development, and environmental sustainability

The primary cause of any drought is a deficiency in rainfall and, in particular, the timing, distribution, and intensity of this deficiency in relation to the existing water storage, demand, and use.

- Observed data
- Drought indexes
- Mann–Kendall test
- GCM data

### Observed data

This study uses high spatial resolution (0.5° \* 0.5°) gridded monthly data CRU TS 3.1, an observational data source, from the Climatic Research Unit, University of East Anglia.

The CRU TS 3.1 dataset covers the period 1901–2009 and data are available over land areas excluding Antarctica.

The CRU TS3.1 provides a monthly time series of global gridded data based on observations from more than 4000 stations

mean temperature, diurnal temperature range, precipitation, wet-day frequency, vapor pressure, cloud cover

### Drought indexes

### **SPI (Standardized precipitation index)**

arguably a more popular drought index, is based solely on precipitation, and measures how much precipitation for a given period of time has deviated from historically established norms.

### RDI (Reconnaissance drought index)

uses PET, in addition to precipitation, as a key variable for assessing the severity of drought

### • SPI

$$\Gamma(\alpha) = \int_0^\infty y^{\alpha - 1} e^{-y} dy$$

$$x_k^{(i)} = \sum_{j=1}^k P_{ij}, i = 1 \text{ to } N,$$

$$g(x_k) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x_k^{a-1} e^{-x_k/\beta} \quad for : x_k > 0$$

$$\alpha = \frac{1}{4A} \left( 1 + \sqrt{1 + \frac{4A}{3}} \right)$$

$$\beta = \frac{\overline{x_k}}{\alpha}$$

$$A = \ln(\overline{x_k}) - \frac{1}{n} \sum_{i=1}^{n} \ln((x_k)_i)$$

$$G(x_k) = \int_0^{x_k} g(x_k) dx_k = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \int_0^{x_k} x_k^{\alpha - 1} e^{-x_k/\beta} dx_k$$

### SPI

$$t=x/\beta$$

$$G(x_k) = \frac{1}{\Gamma(\alpha)} \int_0^{x_k} t^{\alpha - 1} e^{-t} dt$$

$$H(x_k) = q + (1 - q)G(x_k)$$

$$Z = SPI = -\left(t - \frac{c_0 + c_1t + c_2t^2}{1 + d_1t + d_2t^2 + d_3t^3}\right), \quad t = \sqrt{\ln\left(\frac{1}{H(x_k)^2}\right)} \quad for \ 0 < H(x_k) < 0.5$$

$$Z = SPI = \left(t - \frac{c_0 + c_1 t + c_2 t^2}{1 + d_1 t + d_2 t^2 + d_3 t^3}\right), \quad t = \sqrt{\ln\left(\frac{1}{(1 - H(x_k))^2}\right)} \quad for \ 0.5 < H(x_k) < 1.0$$

### RDI

$$a_k^{(i)} = \frac{\sum_{j=1}^k P_{ij}}{\sum_{i=1}^k \text{PET}_{ij}}, i = 1 \text{ to } N$$
  $y_k = \ln(a_k^{(i)})$ 

$$RDI_{n(k)}^{(i)} = \frac{a_k^{(i)}}{\bar{a}_k} - 1 \qquad \qquad RDI_{st(k)}^{(i)} = \frac{y_k^{(i)} - \bar{y}_k}{\hat{\sigma}_{yk}}$$

Drought classification according to SPI and RDI Values.

| SPI and RDI range | Drought classes |  |  |
|-------------------|-----------------|--|--|
| 2 or more         | Extremely wet   |  |  |
| 1.5-1.99          | Very wet        |  |  |
| 1-1.49            | Moderately wet  |  |  |
| 0.99-0.0          | Normal          |  |  |
| 0.0 to -0.99      | Near normal     |  |  |
| -1 to $-1.49$     | Moderately dry  |  |  |
| -1.5 to $-1.99$   | Severely dry    |  |  |
| -2 and less       | Extremely dry   |  |  |

### Mann–Kendall test

**H0:** the data {Xi} are a sample of n independent and identically distributed random variables.

**H1:** Each value  $\{Xi | i = 1, 2, ..., N-1\}$  is compared with all subsequent values of  $\{Xj | j = i+1, i+2, ..., N\}$  and sum of the times of Xj > Xi.

$$p = \sum_{i} n_{i}$$

$$E(S) = 0$$

$$Var(S) = 2(2N + 5)/(9N(N - 1))$$

$$S = \left(\frac{4p}{(N(N - 1))}\right) - 1$$

$$Z = S/(Var(s))^{\frac{1}{2}}$$

### GCM data

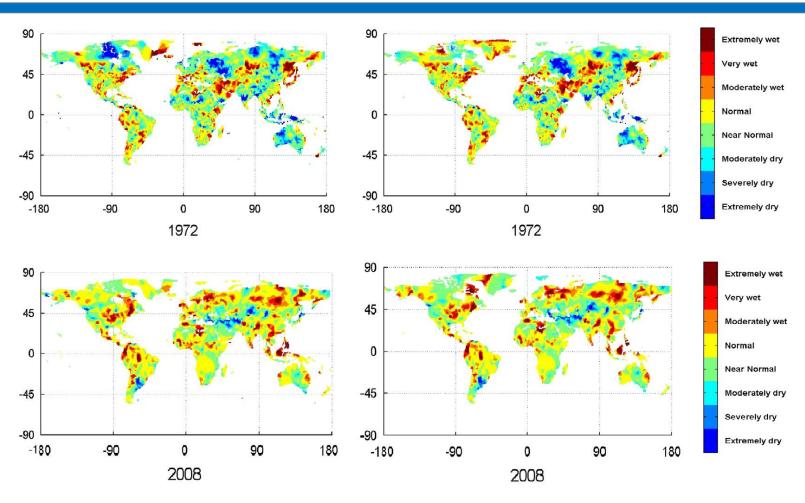
We use the atmospheric data, including precipitation, maximum and minimum temperature, relative humidity, wind speed, and cloud cover for the period 1850–2100 provided by the CSIRO Mk3.6 model based on RCP8.5

PET assessment

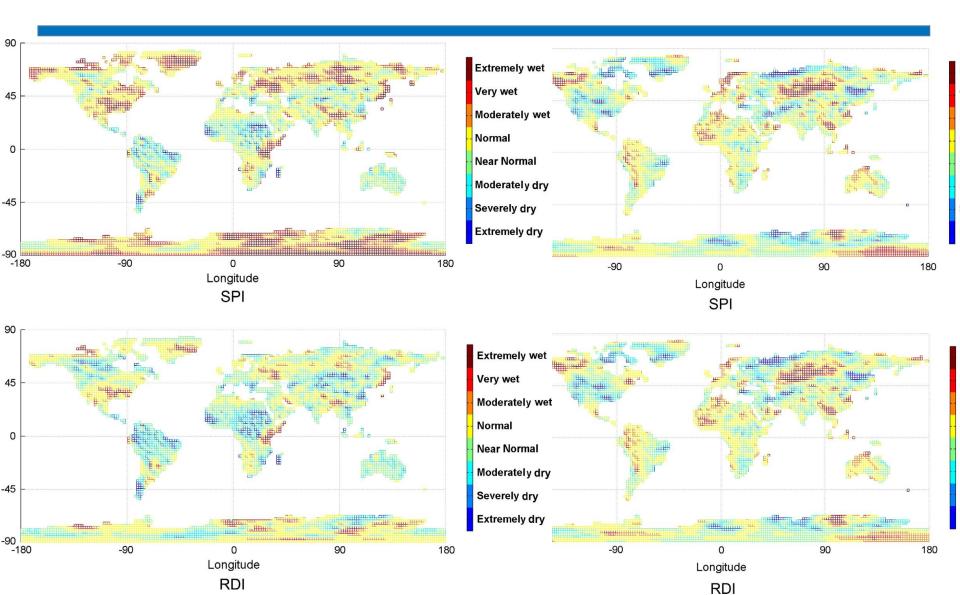
The FAO56-PM model, which is a physically-based approach and incorporates thermodynamic and aerodynamic aspects, has proved to be a relatively accurate method in both humid and arid climates

$$ET_o = \frac{0.408\Delta(R_n - G) + \gamma[900/(T + 273)] U_2(e_s - e_a)}{\Delta + \gamma(1 + 0.34 U_2)}$$

# Drought trend analysis: Mann–Kendall test


Area percentage of observed SPI and RDI trends in different climatic zones based on Z values of Mann–Kendall test (a < 0.05). Z > 1.96 represents a significant increasing trend and Z < -1.96 represents a significant decreasing trend.

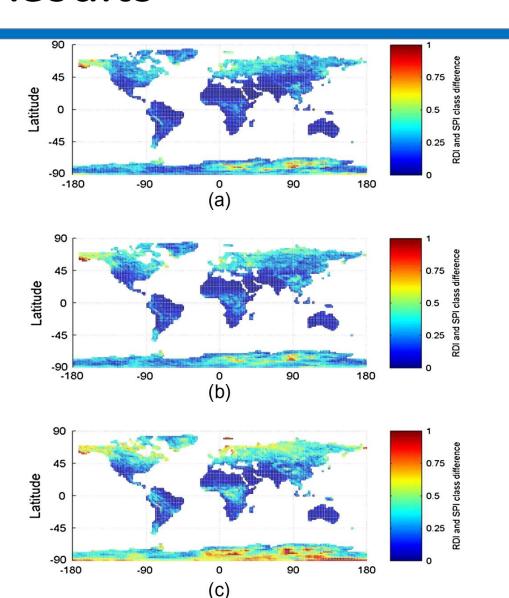
| Climatic zone | Area percentage | Area percentage |           |            |       |                  |     |  |  |  |
|---------------|-----------------|-----------------|-----------|------------|-------|------------------|-----|--|--|--|
|               |                 | Non-significa   | int trend | Decreasing | trend | Increasing trend |     |  |  |  |
|               |                 | SPI             | RDI       | SPI        | RDI   | SPI              | RDI |  |  |  |
| Hyper-arid    | 4.4             | 77.2            | 80.1      | 0.6        | 1.5   | 13.1             | 9.6 |  |  |  |
| Arid          | 13.0            | 86.7            | 89.1      | 0.8        | 1.9   | 12.1             | 9.0 |  |  |  |
| Semi-arid     | 14.9            | 87              | 85.9      | 5.6        | 9.7   | 6.3              | 4.3 |  |  |  |
| Sub-humid     | 13.5            | 86.2            | 85.6      | 6.2        | 10.4  | 7.1              | 4.0 |  |  |  |
| Humid         | 54.2            | 80.7            | 83.8      | 2.8        | 8.0   | 14.5             | 8.2 |  |  |  |


### SPI and RDI areal extent

Global drought areal extent (SPI and RDI <=-1) based on percentage during 1960–2009.

| Year     | Year Drought area |      | Year | Drought area |      | Year | Drought area |         | Year         | Drought area |      | Year | Drought area |      |
|----------|-------------------|------|------|--------------|------|------|--------------|---------|--------------|--------------|------|------|--------------|------|
|          | SPI               | RDI  |      | SPI          | RDI  |      | SPI          | RDI     |              | SPI          | RDI  |      | SPI          | RDI  |
| 1960     | 16.7              | 16.3 | 1970 | 19.8         | 16.2 | 1980 | 18.4         | 16.8    | 1990         | 20.2         | 22.8 | 2000 | 13.2         | 11.9 |
| 1961     | 18.7              | 16.1 | 1971 | 19.0         | 17.4 | 1981 | 15.3         | 15.9    | 1991         | 16.7         | 17.4 | 2001 | 12.4         | 14.2 |
| 1962     | 21.8              | 22.1 | 1972 | 27.5         | 20.9 | 1982 | 19.2         | 16.1    | 1992         | 18.7         | 15.8 | 2002 | 14.7         | 17.1 |
| 1963     | 17.7              | 14.9 | 1973 | 15.4         | 16.8 | 1983 | 22.6         | 20.3    | 1993         | 17.8         | 15.8 | 2003 | 13.0         | 15.1 |
| 1964     | 19.1              | 14.1 | 1974 | 17.7         | 16.2 | 1984 | 21.7         | 20.0    | 1994         | 14.9         | 15.4 | 2004 | 8.5          | 10.1 |
| 1965     | 25.6              | 20.8 | 1975 | 16.2         | 15.9 | 1985 | 21.4         | 18.2    | 1995         | 15.7         | 16.5 | 2005 | 11.2         | 14.5 |
| 1966     | 15.6              | 11.9 | 1976 | 22.1         | 18.3 | 1986 | 20.0         | 17.2    | 1996         | 12.0         | 10.6 | 2006 | 8.2          | 11.9 |
| 1967     | 16.6              | 16.0 | 1977 | 15.6         | 13.5 | 1987 | 21.5         | 19.7    | 1997         | 11.3         | 10.7 | 2007 | 9.1          | 11.7 |
| 1968     | 18.0              | 14.6 | 1978 | 16.3         | 12.9 | 1988 | 16.5         | 18.2    | 1998         | 9.7          | 12.5 | 2008 | 9.0          | 9.7  |
| 1969     | 21.5              | 17.4 | 1979 | 15.3         | 12.8 | 1989 | 17.6         | 18.1    | 1999         | 10.4         | 10.7 | 2009 | 11.9         | 14.1 |
| SPI aver | age = 16.6%       | 6    |      |              |      |      |              | RDI ave | rage = 15.7% |              |      |      |              |      |




Global drought map based on SPI (left) and RDI (right): a dry year (1972) and a wet year (2008).



Average drought class difference between SPI and RDI for periods (a) 1951–2000,

(b) 2001-2050 and

(c) 2051-2100



# Discussion and Conclusions

Analysis of trends in drought for the period 1960–2009

- (1) the agreement between SPI and RDI reduces from the hyper-arid zone toward the humid zone
- (2) when the drought tendencies are different between the indexes, RDI shows more trends toward dryness than SPI does

# Discussion and Conclusions

The land area affected by drought during 1960–2009

|                            | 1962–1973 | 1974–1985 | 1986–1997 | 1998–2009 |
|----------------------------|-----------|-----------|-----------|-----------|
| $T_{mean} / {}^{\circ}\!C$ | 4.72      | 4.92      | 5.30      | 5.73      |
| SPI/%                      | 19.80     | 18.48     | 16.91     | 10.94     |
| RDI/%                      | 16.93     | 16.41     | 16.52     | 12.79     |
| P <sub>mean</sub> /mm      | 683.57    | 685.95    | 683.92    | 699.29    |

Rising trends of temperature in recent decades have caused positive trends of PET in considerable parts of the world and have resulted in higher drought prone areas indicated by RDI than SPI.

# Discussion and Conclusions

- Future climate changes, even under conservative scenarios, are likely to cause further increases in mean temperature.
- Its inclusion in a drought index should improve not only the accuracy of the index in detecting droughts but also in representing the sensitivity of the index to climate changes to capture the related impacts.
- PET, which is an important component in the hydrologic cycle and shows the atmospheric demand for moisture, should no longer be ignored in drought forecasting



# THANK YOU