

Yale-NUIST Center on Atmospheric Environment 耶鲁大学-南京信息工程大学大气环境中心

Quantifying and decomposing surface temperature difference between global lakes and surrounding lands from 1991 to 2010

Heng Lv, 吕恒 2020.07.31

- > Background
- > Methods
- > Results
- > Discussion
- Conclusions

Background

1. The surface temperature difference between lakes and surrounding lands affect the basin weather and regional climate

Lakes versus Lands:

- Smaller albedo
- Greater heat capacity =
- Smaller roughness

Surface temperature difference

- Affect the regional radiation budget and energy balance
- Affect Lake-Land-Atmosphere interaction (Subin et al., 2012) 3

Background

- The observation and simulation of surface temperature difference between lakes and surrounding lands are controversial(Dutra et al., 2010; Krinner, 2003; Lofgren, 1997; Rouse et al., 2008).
- 3. The current researches lack the comparative study of multiple lakes in different climate zones and the decomposition of influencing factors (Diallo et al., 2018; Lv et al., 2019; Sun et al., 2015; Williams et al., 2015).
- 4. As global warming, lake warming, glacier melting and human activities increase the complexity of surface temperature difference between lake and surrounding lands (Schneider and Hook, 2010; Sugiyama et al., 2018; O'Reilly et al., 2015).

Background

Research Contents:

- In this study, the meteorological conditions of global lakes and surrounding lands from 1991 to 2010 are simulated by CESM(Community Earth System Model) coupled CLM4.5(Community Land Model 4.5);
- Based on Google Earth Engine, the MODIS surface temperature product(MOD11A2, MYD11A2) from 2003 to 2010 are obtained to verify CLM4.5 simulation results;
- The surface temperature difference between lake and surrounding land are decomposed into four biophysical contributions using the IBPM(Intrinsic Biophysical Mechanism).

Research Objective:

Quantifying and decomposing surface temperature difference between global lakes and surrounding lands.

2. The lake and surrounding land simulator, CLM4.5

Nest hierarchy: Each gridcell consists of up to five land units or tiles(glacier, urban, agricultural, vegetation and lake). **Atmospheric forcing data:** CRUNCEP (Climatic Research Unit - National Centers for Environmental Prediction) **Spatial resolution:** 0.94° lat $\times 1.25^{\circ}$ lon **Grid quantity:** 192×288 **Temporal resolution:** Month **Simulation time :** 1991-2010

(Oleson et al., 2013) **7**

- 3. Google Earth Engine
 - Google Earth Engine is an online platform created to allow remote sensing users to easily perform big data analyses without the need for computation resources(Ermida et al., 2020).

Google Earth Engine	Search places and datasets	Q 🔽	(2	
Scripts Docs Assets ee.reset() print(var_args) require(path) exports * Internal > ee.ApiFunction > ee.Collection	9 '0602ff', '235cb1', '307e 10 '3be285', '3ff38f', '86e2 11 'fff705', 'ffd611', 'ffb6 12 'ff0000', 'de0101', 'c213 13], 14 }; 15 Map.setCenter(6.746, 46.529, 16 Map.addLayer(2); andSurfaceTemperatureVis,	set - Apps Inspector Console Tasks Use print() to write to this conso	le.
Contraction of the second seco	e) Line drawing. D Exit	野霍次克海	Layers 地图	足星図像

3. Google Earth Engine

MOD11A2 & MYD11A2

Variable	Spatial resolution	Temporal resolution	Study Period	Study areas
Day land surface temperature	1.1	8 day	2003-01- 01T00:00:00 – 2010-12- 27T00:00:00	15 lakes and surrounding lands in different climate zones
Night land surface temperature	1 km			

Based on day and night land surface temperature, calculating the monthly average of lakes and surrounding lands surface temperature.

> A lake or land consists of multiple points or polygons in Google Earth Engine

- 5. The intrinsic biophysical mechanism——IBPM (Lee et al., 2011)
 □ Online ΔT_s: The surface temperature difference between lake and surrounding lands simulated in CLM4.5, as T_s lake T_s land;
 - □ Offline ΔT_s : The summation of all terms([1]~[4]) in IBPM theory, using the variables saved from the online CLM4.5 calculation.

\Box The diagnostic calculation of *total resistance to sensible heat diffusion* r_{t}

- Background
- > Methods
- > Results
 - Model Evaluation
 - Online versus Offline Surface Temperature Difference between lakes and surrounding lands
 - Contributions of Surface Temperature Difference
- Discussion
- Conclusions

Results

1. Model Evaluation

On month scale:

- \succ Seasonal variations in the *lakes and surrounding lands* T_s
- \succ Relationship between ΔT_s (MODIS) and ΔT_s (CLM), using monthly mean

□ On annual scale:

- \blacktriangleright Annual variations in the *lakes and surrounding lands* T_s
- ▶ Relationship between ΔT_s (MODIS) and ΔT_s (CLM), using annually mean

Results

 \Box On month scale: Relationship between ΔT_s (MODIS) and ΔT_s (CLM), using monthly mean

• On annual scale: Annual variations in the *lakes and surrounding lands* T_s Relationship between ΔT_s (MODIS) and ΔT_s (CLM), using annually mean

Results

2. Online versus Offline ΔT_s between lakes and surrounding lands

Spatial Distribution of ΔT_{s} (1991-2010 mean)

Relationship between ΔT_s online calculated by CLM4.5 and the ΔT_s offline calculated with the IBPM theory (1991-2010 mean), pairs of lake and surrounding land in tropical(a), arid(b), temperature(c), cold(d), polar(e) climates and global(f).

Results

3. Contributions of Surface Temperature Difference

Comparison of the biophysical effect partition in different climates according to

□ Formation of Surface Temperature Difference between lake and surrounding land

Zonal Mean of biophysical factors and differences between lake and surrounding land

For global($\Delta T_s = 1.1 \pm 0.0 \text{ K}$):

Discussion

1. Relationship between Leaf Area Index(LAI) and Surface Temperature Difference

tropical(a), arid(b), temperature(c), cold(d), polar(e) climates and global(f).

tropical(a), arid(b), temperature(c), cold(d), polar(e) climates and global(f).

Conclusions

- □ On the annual scale, lakes in arid regions show cooling effect (-1.5 ± 0.1 K). Global lakes show warming effect (1.1 ± 0.0 K), as well as tropical (2.6 ± 0.1K), temperate (1.2 ± 0.1K), and cold (1.0 ± 0.0 K) and polar (0.9 ± 0.1 K) lakes.
- On global scale, the small albedo, small roughness are the main reasons for lake warming effect, which contribute 159% and 247% to the temperature effect, respectively. The small Bowen ratio is the main reasons for lake cooling effect, which contributes -215% to the temperature effect. The warming or cooling effects resulted from ground heat flux change depends on its climate conditions.

Thanks for your attention!