

耶鲁大学-南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment

Urban Climate 24 (2018) 517-528

Study of mobile measurements for detailed temperature distribution in a high-density urban area in Tokyo

Authors: Hiroki Yokoyama, Ryozo Ooka, Hideki Kikumoto

Reporter: Lu Yang 2018.9.14

- 1 Introduction
- 2 Methods

3 Results and discussion

4 Concluions

1 Introduction

2 Methods

2.1 Experiment outline

several city blocks in Shinjuku,Tokyo proportion:26.2 hecuare mean building height: 17 m location:contiguous to Shinjuku Gyoen period:August 25th to 28th,2015 10:00 - 12:00 and 13:00 - 14:00

2.2 Instrument specifications

Platinum resistance (Ventilation shelter)

Table 1

Time

Instrument specifications.

Method Item Specification Record interval Instrument Mobile Platinum resistance (0.5 mm Φ) Range: - 200 to 250, ±0.15 °C Air temperature 1.0 s Time constant: 2.2 s GPS logger (747proS, Transystem) Latitude, longitude GPS accuracy: <3.0 m 2D-RMS Data logger (NR-600, Keyence) -Thermo-hygrometer (RTR-507, T&D) Fixed Range: - 30 to 80, ±0.3 °C 10 min Air temperature Time constant: 7 min Humidity Range: 0 to 99, ±2.5%RH Time constant: 20 s Weather station Wind velocity Three cups anemometer Wind direction Feather Solar radiation Silicon photocell GPS logger (747proS, Transystem) Accuracy: <3.0 m 2D-RMS Latitude, longitude 1.0 s

Fig. 1. Mobile measurement platform.

э)

2.3 Air temperature correction

2.4 Sampling positional data correction

Fig. 3. Schematic diagram of the correction method for the positional data.

Fig.4. Weather conditions measured by the weather station located in Shinjuku Gyoen(August 28th,2015,10:00 to 14:00).

3.2 Measurement error of GPS

3.3 Estimated uncertainties of mobile measurement results

measurement at each grid cell(August 28th,2015,10:00 to 11:00).

3.4 Spatial distribution

1.0 1000 1.8 ave: 22.72 std: 0.23 0.8 1.6 norm 800 0.6 Probability density function [1/°C] Temperature variation [°C] - 0.4 North - South [m] - 0.2 600 - 0.0 (ave) 0.8 -0.2 400 0.6 -0.4 0.4 200 -0.6 0.2 -0.8 -1.0 0.0 -1.5 -1.0 -0.5 200 400 1000 600 800 0.0 0.5 1.0 1.5 2.0 Aug. 28th, 2015 11:00 to 12:00 1.0 1000 1.8 ave: 22.99 std: 0.26 0.8 1.6 - norm 0.6 80 - 0.4 Temperature variation [°C] North - South [m] - 0.2 60 - 0.0 (ave) 400 -0.2 -0.4 200 -0.6 0.2 -0.8 -1.0 0.0 200 400 600 800 1000 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Temperature variation [°C]

East - West [m]

Aug. 28th, 2015 10:00 to 11:00

Aug. 28th, 2015 13:00 to 14:00 1000 1.0 1.8 ave: 22.84 0.8 1.6 std: 0.27 norm 800 0.6 Probability density function [1/°C] Temperature variation [°C] 0.4 .2 North - South [m] - 0.2 600 1.0 - 0.0 (ave) 0.8 - -0.2 400 0.6 -0.4 0.4 200 -0.6 0.2 -0.8 0.0 -1.0 400 600 800 1000 -1.5 -1.0 0.0 0.5 1.0 1.5 2.0 200 -0.5 0 East - West [m] Temperature variation [°C]

Fig.7.Spatial distribution for air temperature and probability density function for air temperature variation(August 28th.2015)

3.5 Influence of the grid size

Fig.8. Spatial distribution of air temperature variation with different spatial resolutions(grid size of 10 m and 100 m)

Table 2

Average and standard deviation of air temperature in the measurement field with different spatial resolutions (grid size of 10 m, 100 m, and 1000 m).

Spatial resolution (grid size) [m]	Date, time, temperature [°C]					
	Aug. 28th, 10:00 to 11:00		Aug. 28th, 11:00 to 12:00		Aug. 28th, 13:00 to 14:00	
	Mean	Std	Mean	Std	Mean	Std
10	22.72	0.23	22.99	0.26	22.84	0.27
100	22.71	0.21	22.98	0.22	22.83	0.20
1000	22.75	-	23.01	-	22.86	-

 The spatial resolution of 1000 m failed to capture variations of approximately 0.2°C(std) on cloudy days.

• A grid size in the order of 10¹ m was required to observe hot spots in the densely developed urban area.

4 Concluions

- The average GPS error in the urban area was 20 m (std:50 m).
- The measurement were obtained on cloudy days and indicated a temporal vriation of air temperature of approximately 0.15°C(std) over 1 h.
- The spatial variations of air temperature for hourly averages was identified within the study area of 0.26 km². The range of the variation was -0.9°C to 0.9°C (min to max).
- A grid size of 10¹ m was required in order to observe locations where the air temperature was locally high.With a grid size of 100 m,we were able to determine a general spatial distribution of air temperature.

耶鲁大学-南京信息工程大学大气环境中心

Yale-NUIST Center on Atmospheric Environment

Thank you for your attention