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The impacts of deforestation on land surface temperature

Introduction

® Decrease in evapotranspiration dominating in the tropics (a warming effect)
® Increase in albedo dominating in the boreal regions (a cooling effect)

® Whether deforestation has a net cooling or warming effect remains elusive in the midlatitudes.
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Introduction

« Many previous studies used the difference between two experiments forced by different land-

cover scenarios to represent the impact of deforestation.

» These differences can be affected by model internal variability.

Case 1 - Vegetated

more humidity and recycling
of water ~ fueling high
precipitation rates

Case 2 - Deforested

L
less humidity and recycling
of water — reduced
precipitation rates
solar
radiation

( Marengo, 2006 )
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Strong contributions of local background climate to

urban heat islands

Lei Zhao?, Xuhui Lee"?, Ronald B. Smith® & Keith Oleson*

The urban heat island (UHI), a common phenomenon in which sur-
face temperatures are higher in urban areas than in surrounding
rural areas, represents one of the most significant human-induced
changes to Earth’s surface climate. Even though they are localized
hotspots in the landscape, UHIs have a profound impact on the
lives of urban residents, who comprise more than half of the world’s
population®. A barrier to UHI mitigation is the lack of quantitative
attribution of the various contributions to UHI intensity* (expressed
as the temperature difference between urban and rural areas, AT).
A common perception is that reduction in evaporative cooling in
urban land is the dominant driver of AT (ref. 5). Here we use a cli-
mate model to show that, for cities across North America, geographic
variations in daytime AT are largely explained by variations in the
efficiency with which urban and rural areas convect heat to the lower
atmosphere. If urban areas are aerodynamically smoother than sur-
rounding rural areas, urban heat dissipation is relatively less efficient
and urban warming occurs (and vice versa). This convection effect
depends on the local background climate, increasing daytime AT by

3.0 = 0.3 kelvin (mean and standard error) in humid climates but
decreasing ATby 1.5 % 0.2 kelvin in dry climates. In the humid east-
ern United States, there is evidence of higher ATin drier years. These
relationships imply that UHIs will exacerbate heatwave stress on human
health in wet climates where high temperature effects are already
compounded by high air humidity®” and in drier years when pos-
itive temperature anomalies may be reinforced by a precipitation—
temperature feedback®. Our results support albedo management as
a viable means of reducing AT on large scales™".

The conversion of natural land to urban land causes several notable
perturbations to the Earth’s surface energy balance. Reduction of evap-
orative cooling is generally thought to be the dominant factor contrib-
uting to UHI Anthropogenic heat release is an added energy input to
the energy balance and should increase the surface temperature. Energy
input by solar radiation will also increase if albedo is reduced in the
process of land conversion. Buildings and other artificial materials can
store more radiation energy in the daytime than can natural vegetation
and soil; release of the stored energy at night contributes to night-time

( Zhao et al., 2014 )
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Urban heat islands in China enhanced by haze
pollution

Chang Cao"2, Xuhui Lee"2, Shoudong Liu, Natalie Schultz, Wei Xiao"2, Mi Zhang' & Lei Zhao'23

The urban heat island (UHI), the phenomenon of higher temperatures in urban land than the
surrounding rural land, is commonly attributed to changes in biophysical properties of the
land surface associated with urbanization. Here we provide evidence for a long-held
hypothesis that the biogeochemical effect of urban aerosol or haze pollution is also a con-
tributor to the UHI. Our results are based on satellite observations and urban climate model
calculations. We find that a significant factor controlling the nighttime surface UHI across
China is the urban-rural difference in the haze pollution level. The average haze contribution
to the nighttime surface UHI is 0.7+0.3K (mean+1 s.e.) for semi-arid cities, which is
stronger than that in the humid climate due to a stronger longwave radiative forcing of
coarser aerosols. Mitigation of haze pollution therefore provides a co-benefit of reducing heat
stress on urban residents.

(Cao etal., 2016 )



Introduction

m How the local land surface temperature response to deforestation simulated by different

ESMs can be compared?

Compare the sensitivities and responses of LST to deforestation based on the subgrid-

scale outputs from global ESMs using an improved attribution framework.
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Model simulations
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The impacts of deforestation on surface fluxes in the two models

Method

a Fraction of grid box area covered by forests b Fraction of grid box area covered by croplands a Fraction of grid box area covered by forests b
90°N 1 90°N ) — - 1 90°N 1 90°N
0.9 V.Ngg';gﬁ%g{i;@/,i, = . 0.9
60°N ! 08 BOON| ey = G B0°N [ =5 0.8 60°N
0.7 0.7
30°N 0.6  30°N 30°N 0.6 30°N
0.5 0.5
0° 0.4 0° 0° 0.4 0°
0.3 E 0.3
30°s 02 30°S 30°S 02 30°S
0.1 : 0.1
60°S - 0 ° —— 0 60°S : : 0 o 0
180°  120°W  60°W 0° 60°E  120°E  180° 180° 120°W 60°W  0° 60°E  120°E  180° 180°  120°W  60°W 0° 60°E  120°E  180° 180° 120°W 60°W  0° 60°E  120°E  180°
c Net radiation d Sensible heat flux c Net radiation d Sensible heat flux
200 : : ‘ 140 : | 200 140
150+
-
E
2 100}
g
14
50+
1 2 3 4 5 6 7 8 9 10 11 12 7 10 11 12
e Latent heat flux f f
140 T T T T % v v ' ' ' '
120
100 |
Ew t €
o e0f = s
a o O
40
20+
Ol : : A0 : 0 : : -40 :
1.2 3 4 5 6 7 8 9 10 11 12 1.2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

by their contrasting surface biophysical properties.

Forests and croplands have large differences in terms of radiative and turbulent fluxes, which are caused




The attribution framework
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The attribution framework

Method

land

A

atmosphere

A

oT oT oT aT. 0T oT oT oT aT.
AT,= — Aa+ — Ae+ — Ar,+ — Arg+— - AG +— = Aq — AT, +— AS;,+—— AL;,
aa oe drg 0rg 0T, 0Sin OLin
a b
SWin!LVVianaiqa’P SWin,LWin,P
Tm’ q2m
Tsf TS

aTs 9Ts Ty aTS T aTs aTs aTs 9T, 9T,

== Aa+ — Ary+ — Arg+ — == Ao+ — + = Ar,+ —= AG+ Sk

AT o A or. Ar, o Ar. AG AT Ta Ao or. Ar, o, Ar. " AG P4, Ag,+ o, AT,



Results

sjnsay



Attribution of the LST response to deforestation in the GFDL-ESM2Mb model (summer)

Results

» Converting forests to croplands results in warming during summer. (Note: AT, = Teyopiana — Trorest)
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Attribution of the LST response to deforestation in the CESM model (summer)

Results

Temperature (°

C)

The attribution method captures AT
reasonably well.

A cooling effect near the northern high
latitudes and over eastern America, India,
and China, but a warming effect over
other regions.

Largely explained by changes in
aerodynamic resistance.
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Comparison between results from the GFDL-ESM2Mb and CESM models (summer)
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Comparison between results from the GFDL-ESM2Mb and CESM models (summer)
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a aT./da in GFDL model b T./da in CESM model
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Results

Aa in GFDL model

[DJF -
180° 120°W 60°W  0°

0,

60°E  120°E  180°

c Ar, in GFDL model
90°N =
60°N | - ‘ﬁ *é
30°N 4‘:'£f PR '
SD’JJA "*hr {-,q—;-r ) ¢
0 -
, *5% /_. ~ 11
30°S | A } g
og 2JF i} &
180° 120°w 60°W 0°

“9"’?,"':5:

60°E 120°E 180°

e Arg in GFDL model
90°N ——— — -
ks f{",‘:‘* R PP e =1 Miso
B0°N | e ) Gt % ,\;»f/. o s ) g I300
[ , A S SR C 150
4 1L B 5 . g

0, 4 X 3P 60
30°N -Qf 'Y h\,}. 30

[JJA y VY e TR A 150

83 - £ \ 19 S 230
0% L VA ¥ 3 1 B -300
v i AR B
oo | DJF ¥- . #1 i 600

180°  120°W  60°W 0° 60°E  120°E  180°

g AG in GFDL model
90°N
b T # x T n .. {100
60°N | /-‘-\'7‘5[: = (T & |§§
30°N | \ 4 e Bl ~hat 10
RENS . ) 1ge
8"» g ) T TR g2
3o°sj {7 < I:?g
LY 4 . -100
180° 120°W 60°W  0°  60°E 120°E  180°

90°N
60°N
30°N
30°S

0,
01 o of°S
90°N
60°N
30°N
O
- 80

30°s

o
-150 0 1580S

90°N
60°N

30°N

8

;
E..

1 o
-600 0 6080S

90°N
60°N
30°N
%

30°s

1 0
-100 0 108OS

b Aa in CESM model
90°N . = o : I 90°N

. % B 0.1
£ BRI L =1 X
B0°N [ > ST T 7| Boos 60°N
i w ] 0.025
0, . Ry = 0.01 0,
30°N[ tﬂ' » 3 4 : 0,005 30°N
K 70 -0.005 1 88

30°s

| O,
01 0 OA‘FO S

o ) v

g ; : : )

o - -~ . -

T ) Y0, . 0.0
a0%s| K4 s o 008
[DJF 7 ‘ . Vo o0

60°s > o

180° 120°W 60°W  0°

Q"
7~

60°E  120°E  180°

d Ar, in CESM model
90°N 90°N
60°N| e 60°N
30°N[ | 130°N
[JJA
] < ]
80 - - - 80
30°S | g}r730°s

[DJF
SOOS . . "
180° 120°W 60°W  0°

— L I 0
60°E  120°E  180° -150 0 15805

f Ar in CESM model
90°N = 90°N
e A < 4 {
60°N RS Sy | 60°N
30°N kit( | | | 30N
t o -y - {
REN <5 AS .
§e =7 %
[ ¥
30°s | By u ] 30°s
'DJF Y

0

. | OOS
180° 120°W 60°W  0°  60°E 120°E  180° 600 0 608

h AG in CESM model
90°N 90°N
60°N 60°N
30°NT | |30°N
[JA
] (]
(] v 80
30°S ’§> 30°S
[DJF

60°S 0°S
180° 120°W 60°W  0°  60°E 120°E  180° 00 0 108

Both models agree that croplands have
higher albedo and aerodynamic
resistance values than forests, implying
that deforestation causes the land to be
brighter and smoother.

For Ar, the differences between the two
models are possibly due to the substantial
difference in the physical
parameterizations of evapotranspiration
used in the two models.

For AG, the CESM model shows much
larger values than the GFDL model, which
is due to the differences in the model
structures.
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median value: 20% ~ 50%

The fractional differences in terms of the sensitivities
are smaller than those of the corresponding changes.

The biophysical changes are directly related to the
model structure and parameterization differences.

The sensitivities are constrained by the surface energy
balance equation.

55% ~ 100%




Conclusions

Conclusions




Subgrid-scale information from land surface models is a powerful tool for investigating the impacts
of LULCC on the local surface climate.

Aerodynamic resistance is the key controlling factor for the LST changes induced by deforestation.

The dissimilarity between the two models in terms of LST responses to deforestation is more
related to the magnitude of biophysical changes.
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Contrasting Evaporative Responses of Ecosystems to
Heatwaves Traced to the Opposing Roles of Vapor
Pressure Deficit and Surface Resistance
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Abstract ing the ive response of to is critical for
ecosystem services and water resources, especially under a changing climate. In this study, we examine
the land-atmosphere exchange of water and heat fluxes under heatwave and nonheatwave conditions across
five different land cover types, including croplands, deci broadleaf forests,
and evergreen needleleaf forests, using data from eddy covariance towers. Results show that net radiation
and sensible heat flux increase from to heatwave itions across all five land cover types but
latent heat flux shows ing responses to An attribution analysis further

that heatwave-induced changes in ive fraction are mainly caused by changes in vapor pressure
deficit (positive contribution) and changes in surface resistance (negative contribution). The imbalance
between the positive and negative contributions varies across the five land cover types and is responsible for
their i ive responses to

Plain Language Summary A heatwave is a period of extremely hot weather. Under a warming
climate, heatwaves are expected to become more frequent, stronger, and longer lasting. Heatwaves are
amongst the deadliest natural disasters. Within such contexts, key questions that need to be addressed
include how different respond to i and, more importantly, what factors
control such contrasting responses. In this study, we employ an analytical attribution framework and
combine it with observational data to explore the responses of evaporative fraction, a key indicator of the
partition between sensible and latent heat fluxes, to heatwaves over five major land cover types. We quantify
the contributions of various land surface and atmospheric factors in controlling changes in the evaporative

(Wang et al., 2019 )
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Modification of surface energy balance during springtime: The relative
importance of biophysical and meteorological changes
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ABSTRACT

In ecosystems characterized by strong seasonality in leaf area, the emergence of leaves during springtime
modifies land surface energy balance by altering surface biophysical properties during a period when atmo-
spheric conditions are also changing. However, the relative importance and interactions among surface bio-
physical and atmospheric variables in modifying the surface energy balance are not well understood. In this
study, we use a physically-based attribution method to quantify the relative importance of covarying surface
biophysical and atmospheric variables in modifying the surface energy balance during springtime. Results show
that the widely observed decrease in the Bowen ratio that occurs with leaf emergence is not solely attributable to
the sharp decrease in surface resistance caused by increasing leaf area. Rather, decreases in the Bowen ratio
reflect the combined effects of changes in surface properties and atmospheric conditions. Specifically, decreasing
surface resistance and increasing air temperature both act to reduce the Bowen ratio, while concurrent increases
in specific humidity provide a negative feedback that constrains evaporative fluxes. In parallel, aerodynamic
resistance tends to increase after leaf emergence largely because wind speed tends to decrease during springtime.
These findings provide a refined characterization of surface energy balance dynamics during springtime when
both surface and atmospheric conditions are changing rapidly and reveal previously understudied properties of
the near-surface atmosphere that influence surface Bowen ratio and acrodynamic resistance.

( Moon et al., 2020 )
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