Fine-resolution Global Land Use/Cover Change Modeling under Four Representative Concentration Pathways by 2100

Xuecao Li

Iowa State University

11/8/2019

Outline

Background

Rapid global urbanization process

World Urbanization Prospects

- > More than half of the world's population residing in urban area
- > By 2050, 66% of the world's population is projected to be urban

(United Nations, 2015)

Global Urban Land Expansion

- > The global urban area increased about 1.3 times in 2013 compared to year 1992 (Zhou et al., 2018)
- > The increment is even faster in developing countries such as China (more than doubled) (Wang et al., 2012)

Important of urban area for achieving the SDGs

Although globally the urban area occupied less than 1% of the total land surface, it accounts

> 90% of global economy; 50% of world population; 65% of world's energy; 70% of global greenhouse gas emissions (Solecki et al., 2013; Schneider et al., 2012)

Urban growth modeling is of great importance to support global sustainable development

Importance of modeling future urban growth

https://www.buildup.eu/en/practices/publications/monetary-benefitsambitious-building-energy-policies http://knowledge.ckgsb.edu.cn/2014/07/02/technology/the-business-ofurbanization-in-china/ <u> Urban Heat Island</u>

Agriculture System

Rural

Datasets and method

Overall framework

Datasets

FROM-GLC (2010)

Resolution: 30m; 9 Level-1 land cove types

(Gong et al., 2013)

Datasets

Land Use Harmonization (LUH) Data

(Hurtt et al., 2011)

LUH

Historical Period (1500-2005)

Future Scenarios (2006-2100)

IMAGE GCAM AIM MESSAGE

Variable	Description		
Land Cover- Units=fraction (%) of each grid cell			
gcrop	cropland		
gothr	primary land		
gpast	pasture		
gsecd	secondary land		
gurbn	urban land		

-

Spatial Resolution: 0.5 °

Temporal Resolution: annual

Spatial proxies

Table 1 Spatially explicit variables adopted for modeling				
Variable	Description	Source	Resolution	
Elevation	Digital elevation model (DEM)	Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM ^a	30 m	
Slope	Slope calculated from DEM			
Рор	Population	Gridded Population of the World ^b	5 km	
City _{dist}	Distance to cities	ESRI World Cities layer (vector) ^c	Vector	
Road _{dist}	Distance to roads	ESRI World Roads layer (vector) ^d	Vector	
Railway _{dist}	Distance to railways	ESRI World Railroads layer (vector) ^e	Vector	
Soil _d	Soil depth	World Harmonized Soil Database ^f	10 km	
Soil _{th}	Soil restriction (high inputs)		10 km	
Soil _{rt}	Soil restriction (low inputs)		10 km	
Temp	Mean temperature	WorldClim ^g	1 km	
Pre	Mean precipitation		1 km	
PA	Protected area	World Database of Protected Area ^h	Vector	

The links for these variables are as follows: ^a http://www.jspacesystems.or.jp/ersdac/GDEM/E/4.html; ^b http://sedac.ciesin.columbia.edu/data/ collection/gpw-v3; ^c http://www.arcgis.com/home/item.html?id=dfab3b294ab24961899b2a98e9e8cd3d; ^d http://www.arcgis.com/home/item. html?id=83535020ce154bd5a498957c159e3a99; ^e http://www.arcgis.com/home/item.html?id=5ef3425348954c84a45860bcf86c78ab; ^f http:// webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/; ^g http://www.worldclim.org/; ^h http://www.wdpa.org/

Technique workflow

Cellular automata model

Rule1: IF central (live) & neighbor (2 or 3 live), Then die (competition)

Rule2 : **IF** central (die) & neighbor (3 live), **Then** live (reproduce)

Urban CA model

Deal with multi-types

Results

Global pattern of LULC in 2100

Future urbanization in Eastern China

Modeled urban dynamic in 2100 under scenarios of RCP 2.6 and RCP 8.5 in eastern China.

Improved spatial details (compare to LUH)

Urban fraction in 2100 under RCP 8.5 (left: 0.5 °; right: modeled)

Temporal dynamics (case study)

Urban sprawl in Shanghai

Urban sprawl in Shanghai

Model performance for primary types

Analysis of spatial variables in each 0.5 ° extent

✤ The most important variable in each 0.5 ° extent

* Traffic is the most important variables to explain the spatial pattern of urban

A recent work of urban area projection

✤ Use more than 20 years continuous observations of urban extent (from NTL)

The relationship between per capita urban areas and per capita cumulative gross domestic product (GDP) for all countries in the world (a) and for representative countries that rank high regarding the urban area in 2013 (b).

Li et al., 2019

A recent work of urban area projection

Download link: https://figshare.com/articles/Global_urban_area_projection_under_five_SSPs/7817624/1

Urban area growth ratio (compare to 2013) at the country level by 2100 under five Shared Socioeconomic Pathways (SSPs).

Discussion

Built the fine-scale modeling framework for global scale application

The mapped datasets can be potentially used in future climate studies

More and more high-spatial and temporal resolution urban extent data are available to support future modeling of urban extent

Download link: https://figshare.com/articles/A_cellular_automata_downscaling_based_1_km_global_land_use_datasets_2010_2100_/9943688