耶鲁大学-南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment # Characteristics and driving factors of temporal variations in surface $PM_{2.5}$ over Suzhou and surrounding regions Yao Jiang 4/26/2013 #### 耶鲁大学-南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment ### **Outline** - Motivation and objectives - Data and methodology - Preliminary results - Next steps #### **Motivation** - PM_{2.5}: solid particles or liquid droplets with diameter less than or equal to 2.5 micrometers in size. - Impact on climate changes: - Direct radiative forcing: the scattering of solar radiation and the absorption/emission of terrestrial radiation - Indirect radiative forcing: mainly by effects of aerosols on cloud properties - Impact on human health: one of major air pollutants - Source: industrial, biomass combustion, wind-blown (mineral dust), and natural - Components: elemental carbon, organic carbon, sulfate, nitrate, and so on. ## Clear Skye versus haze day # PM_{2.5} studies in Yangtze River Delta and China - At present, study for the Chinese city PM2.5 is less, limited to a few big city, such as Nanjing, Beijing, mainly focus on the temporal and spatial variation. We lack research on the causes for the high concentration of events. - PM_{2.5} is becoming more and more serious in YRD; the transparency of atmosphere is getting worse; there is long-standing aerosol cloud. ### Scientific questions and objectives - What are the main features of temporal variations in surface PM_{2.5} over Suzhou and surrounding regions? - What kinds of weather systems cause high concentrations of PM_{2.5} in this region? - How do human activities influence temporal variations in surface PM_{2.5} concentrations? ### **Observational data** Table.1 Summary of the data used in this study | | Suzhou | Kunshan | Taicang | |------|---|---|--------------------------------------| | 2011 | PM_{10} , $PM_{2.5}$, SO_2 , NO_x , O_3 , Scattering coefficient, RH , Air temperature | PM_{10} , $PM_{2.5}$, SO_2 , NO_x , O_3 , Scattering coefficient | PM ₁₀ , PM _{2.5} | | 2012 | | PM ₁₀ , PM _{2.5} , SO ₂ ,
NO _x , O ₃ ,
Scattering
coefficient, RH, Air
temperature | Y | ### **Preliminary results** Fig.1 Time series of PM_{2.5} concentrations in 2011 ### USNAQS vs. China's NAQS Table.3 USNAQS vs. China CNAQS | | PM _{2.5} (μ | g/m³) | PM ₁₀ (μg/m³) | | O ₃ (ppb) | NO ₂ (ppb) | | SO ₂ (ppb) | | |-----|----------------------|-------------|--------------------------|-------------|----------------------|-----------------------|------------|-----------------------|--------------| | US | Annual | 24-
hour | 24-hour
50 | | 8-hour | Annual | 1-
hour | 3-
hour | 1-
hour | | | 15 | 35 | | | 75 | 53 | 100 | 50 | 75 | | CHN | Annua1 | 24-
hour | Annual | 24-
hour | 1-hour | Annual | 1-
hour | Annua
1 | 24-
hour | | | 35 | 75 | 100 | 150 | 100 | 39 | 117 | 21 | 52.5
Yale | ### General features of PM_{2.5} Table.2 Daily, monthly, yearly means of air pollutants in 2011 | | | PM _{2.5} (μg/m ³) | PM ₁₀ (μg/m³) | O ₃ (ppb) | NO _x (ppb) | SO ₂ (ppb) | |---------|-------|--|--------------------------|----------------------|-----------------------|-----------------------| | | | | | | | | | Kunshan | day | 56.3 | 103.5 | 22.5 | 27.1 | 9.9 | | | month | 56.7 | 103.6 | 22.5 | 27.2 | 9.9 | | | year | 56.9 | 104.3 | 22.6 | 27.5 | 9.9 | | Suzhou | day | 54.5 | 119.0 | 13.8 | 14.1 | 13.8 | | | month | 58.4 | 106.7 | 23.8 | 39.8 | 14.6 | | | year | 58.0 | 106.0 | 23.8 | 39.8 | 14.6 | | Taicang | day | 72.5 | 126.9 | | | | | | month | 72.8 | 128.6 | | | | | | year | 75.8 | 130.8 | | | Yale | ## Diurnal pattern of PM_{2.5} (yearly mean) Fig.2 Daily variations in $PM_{2.5}$ in 2011 ### Diurnal pattern of PM₁₀ (yearly mean) Fig.3 Diurnal pattern of PM₁₀ (yearly mean) in 2011 ### Diurnal pattern of PM_{2.5} in spring Fig.4 Diurnal pattern PM_{2.5} in spring 2011 ### Diurnal pattern of PM_{2.5} in summer Fig.5 Diurnal pattern PM2.5 in summer 2011 ### Diurnal pattern of PM_{2.5} in autumn Fig.6 Diurnal pattern of PM_{2.5} in autumn 2011 ### Diurnal pattern of PM_{2.5} in winter Fig.7 Diurnal pattern PM2.5 in winter 2011 ### Diurnal pattern (weekday vs. weekend) Fig.8 Diurnal pattern (weekday vs. weekend) # Relationships of PM_{2.5} with other species (year) Fig.10 PM_{2.5} versus PM₁₀ Fig.11 $PM_{2.5}$ versus NO_X # Relationships of PM_{2.5} with other species (cont.) Fig.12 PM_{2.5} versus SO₂ Fig.13 PM_{2.5} versus O₃ # Relationships of PM_{2.5} with other species (winter) Fig.14 PM_{2.5} versus PM₁₀ Fig.15 PM_{2.5} versus NO_X # Relationships of PM_{2.5} with other species (cont.) Fig.16 PM_{2.5} versus SO₂ Fig.17 PM_{2.5} versus O₃ ### PM_{2.5} versus other species (R²) Table.4 The relationship (R2) between $PM_{2.5}$ and various pollutants | | Spring | Summer | Autumn | Winter | Year | |------------------|--------|--------|--------|--------|------| | Ozone | 0.01 | 0.06 | 0.01 | 0.09 | 0.00 | | NO _x | 0.18 | 0.06 | 0.27 | 0.41 | 0.20 | | SO ₂ | 0.25 | 0.02 | 0.16 | 0.39 | 0.14 | | PM ₁₀ | 0.79 | 0.88 | 0.90 | 0.93 | 0.62 | ### PM_{2.5} versus meteorological variables Table.5 The relationship (R^2) between $PM_{2.5}$ and meteorological variables | | Spring | Summer | Autumn | Winter | Year | |----------------------|--------|--------|--------|--------|------| | Relative
humidity | 0.00 | 0.00 | 0.01 | 0.01 | 0.05 | | Temperature | 0.12 | 0.02 | 0.08 | 0.07 | 0.09 | ### Days exceeding CNAQS of PM_{2.5} Table.6 Exceedance days of PM_{2.5} observed at Suzhou site in four seasons, 2011 | PM _{2.5}
(μg/m3) | Spring | Summer | Autumn | Winter | Year | |------------------------------|--------|--------|--------|--------|------| | 0—35
Very good | 9 | 42 | 50 | 12 | 113 | | 35—75
good | 44 | 45 | 32 | 34 | 155 | | 75 and above below grade | 39 | 5 | 8 | 41 | 93 | # Case study high concentrations of PM_{2.5} Table.7 Maximum and hourly mean PM_{2.5} during 150-154 of 2011 | | | Kunshan | Suzhou | Taicang | |------------------|----------------|---------|--------|---------| | PM2.5
(μg/m³) | Highest | 235. 6 | 399. 4 | 235. 9 | | | Hourly
mean | 150. 2 | 110. 6 | 147. 5 | ### Time series of PM_{2.5} Fig.18 PM_{2.5} during the days of 150-154 in 2011 ### Surface weather chart Fig.19 Weather chart at during 150-154 ### 850hPa weather chart Fig.20 850hPa weather chart during 150-154 ### Time series of T and RH Fig.21 Time series of T and RH observed at Suzhou during DOY 150-154 Yale ### Impact of meteorological conditions Fig.22 Concentrations of $PM_{2.5}$ vs RH and $PM_{2.5}$ vs T during 150-154 in Suzhou # Time series of O₃, NO_x, and SO₂ ### Impact of meteorological conditions Fig.24 Concentrations of $PM_{2.5}$ vs SO_2 and $PM_{2.5}$ vs NO_X during 150-154 in Suzhou ### **Summary** - Diurnal patterns show - strong peak in the morning and weak peak in the afternoon, indicating the important impact of human activities - evident variations in the four seasons except for summer. - Seasonal patterns show - higher concentrations in winter and spring, lower values in summer, indicating the impact of meteorological conditions ### **Summary (cont.)** - PM_{2.5} became a serious air quality problem in Suzhou and surrounding regions. The USNAQS of PM_{2.5} was exceeded on 68% of total days in 2011 (Suzhou). - R² values show that very little dependence of PM_{2.5} on other pollutants (e.g., SO₂, No_x, and O₃), and on temperature and relative humidity. Other important meteorological variables such as weather systems and PBL heights need further investigation, especially for PM_{2.5} episodes. #### 耶鲁大学-南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment # Next step Do more detailed analysis Analyze 2012 observational data Write a manuscript for journal publication 耶鲁大学-南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment # Thank you