耶鲁大学-南京信息工程大学大气环境中心

Yale-NUIST Center on Atmospheric Environment

Characteristics and driving factors of temporal variations in surface $PM_{2.5}$ over Suzhou and surrounding regions

Yao Jiang

4/26/2013

耶鲁大学-南京信息工程大学大气环境中心

Yale-NUIST Center on Atmospheric Environment

Outline

- Motivation and objectives
- Data and methodology
- Preliminary results
- Next steps

Motivation

- PM_{2.5}: solid particles or liquid droplets with diameter less than or equal to 2.5 micrometers in size.
- Impact on climate changes:
- Direct radiative forcing: the scattering of solar radiation and the absorption/emission of terrestrial radiation
- Indirect radiative forcing: mainly by effects of aerosols on cloud properties
- Impact on human health: one of major air pollutants
- Source: industrial, biomass combustion, wind-blown (mineral dust), and natural
- Components: elemental carbon, organic carbon, sulfate, nitrate, and so on.

Clear Skye versus haze day

PM_{2.5} studies in Yangtze River Delta and China

- At present, study for the Chinese city PM2.5 is less, limited to a few big city, such as Nanjing, Beijing, mainly focus on the temporal and spatial variation. We lack research on the causes for the high concentration of events.
- PM_{2.5} is becoming more and more serious in YRD; the transparency of atmosphere is getting worse; there is long-standing aerosol cloud.

Scientific questions and objectives

- What are the main features of temporal variations in surface PM_{2.5} over Suzhou and surrounding regions?
- What kinds of weather systems cause high concentrations of PM_{2.5} in this region?
- How do human activities influence temporal variations in surface PM_{2.5} concentrations?

Observational data

Table.1 Summary of the data used in this study

	Suzhou	Kunshan	Taicang
2011	PM_{10} , $PM_{2.5}$, SO_2 , NO_x , O_3 , Scattering coefficient, RH , Air temperature	PM_{10} , $PM_{2.5}$, SO_2 , NO_x , O_3 , Scattering coefficient	PM ₁₀ , PM _{2.5}
2012		PM ₁₀ , PM _{2.5} , SO ₂ , NO _x , O ₃ , Scattering coefficient, RH, Air temperature	Y

Preliminary results

Fig.1 Time series of PM_{2.5} concentrations in 2011

USNAQS vs. China's NAQS

Table.3 USNAQS vs. China CNAQS

	PM _{2.5} (μ	g/m³)	PM ₁₀ (μg/m³)		O ₃ (ppb)	NO ₂ (ppb)		SO ₂ (ppb)	
US	Annual	24- hour	24-hour 50		8-hour	Annual	1- hour	3- hour	1- hour
	15	35			75	53	100	50	75
CHN	Annua1	24- hour	Annual	24- hour	1-hour	Annual	1- hour	Annua 1	24- hour
	35	75	100	150	100	39	117	21	52.5 Yale

General features of PM_{2.5}

Table.2 Daily, monthly, yearly means of air pollutants in 2011

		PM _{2.5} (μg/m ³)	PM ₁₀ (μg/m³)	O ₃ (ppb)	NO _x (ppb)	SO ₂ (ppb)
Kunshan	day	56.3	103.5	22.5	27.1	9.9
	month	56.7	103.6	22.5	27.2	9.9
	year	56.9	104.3	22.6	27.5	9.9
Suzhou	day	54.5	119.0	13.8	14.1	13.8
	month	58.4	106.7	23.8	39.8	14.6
	year	58.0	106.0	23.8	39.8	14.6
Taicang	day	72.5	126.9			
	month	72.8	128.6			
	year	75.8	130.8			Yale

Diurnal pattern of PM_{2.5} (yearly mean)

Fig.2 Daily variations in $PM_{2.5}$ in 2011

Diurnal pattern of PM₁₀ (yearly mean)

Fig.3 Diurnal pattern of PM₁₀ (yearly mean) in 2011

Diurnal pattern of PM_{2.5} in spring

Fig.4 Diurnal pattern PM_{2.5} in spring 2011

Diurnal pattern of PM_{2.5} in summer

Fig.5 Diurnal pattern PM2.5 in summer 2011

Diurnal pattern of PM_{2.5} in autumn

Fig.6 Diurnal pattern of PM_{2.5} in autumn 2011

Diurnal pattern of PM_{2.5} in winter

Fig.7 Diurnal pattern PM2.5 in winter 2011

Diurnal pattern (weekday vs. weekend)

Fig.8 Diurnal pattern (weekday vs. weekend)

Relationships of PM_{2.5} with other species (year)

Fig.10 PM_{2.5} versus PM₁₀

Fig.11 $PM_{2.5}$ versus NO_X

Relationships of PM_{2.5} with other species (cont.)

Fig.12 PM_{2.5} versus SO₂

Fig.13 PM_{2.5} versus O₃

Relationships of PM_{2.5} with other species (winter)

Fig.14 PM_{2.5} versus PM₁₀

Fig.15 PM_{2.5} versus NO_X

Relationships of PM_{2.5} with other species (cont.)

Fig.16 PM_{2.5} versus SO₂

Fig.17 PM_{2.5} versus O₃

PM_{2.5} versus other species (R²)

Table.4 The relationship (R2) between $PM_{2.5}$ and various pollutants

	Spring	Summer	Autumn	Winter	Year
Ozone	0.01	0.06	0.01	0.09	0.00
NO _x	0.18	0.06	0.27	0.41	0.20
SO ₂	0.25	0.02	0.16	0.39	0.14
PM ₁₀	0.79	0.88	0.90	0.93	0.62

PM_{2.5} versus meteorological variables

Table.5 The relationship (R^2) between $PM_{2.5}$ and meteorological variables

	Spring	Summer	Autumn	Winter	Year
Relative humidity	0.00	0.00	0.01	0.01	0.05
Temperature	0.12	0.02	0.08	0.07	0.09

Days exceeding CNAQS of PM_{2.5}

Table.6 Exceedance days of PM_{2.5} observed at Suzhou site in four seasons, 2011

PM _{2.5} (μg/m3)	Spring	Summer	Autumn	Winter	Year
0—35 Very good	9	42	50	12	113
35—75 good	44	45	32	34	155
75 and above below grade	39	5	8	41	93

Case study high concentrations of PM_{2.5}

Table.7 Maximum and hourly mean PM_{2.5} during 150-154 of 2011

		Kunshan	Suzhou	Taicang
PM2.5 (μg/m³)	Highest	235. 6	399. 4	235. 9
	Hourly mean	150. 2	110. 6	147. 5

Time series of PM_{2.5}

Fig.18 PM_{2.5} during the days of 150-154 in 2011

Surface weather chart

Fig.19 Weather chart at during 150-154

850hPa weather chart

Fig.20 850hPa weather chart during 150-154

Time series of T and RH

Fig.21 Time series of T and RH observed at Suzhou during DOY 150-154

Yale

Impact of meteorological conditions

Fig.22 Concentrations of $PM_{2.5}$ vs RH and $PM_{2.5}$ vs T during 150-154 in Suzhou

Time series of O₃, NO_x, and SO₂

Impact of meteorological conditions

Fig.24 Concentrations of $PM_{2.5}$ vs SO_2 and $PM_{2.5}$ vs NO_X during 150-154 in Suzhou

Summary

- Diurnal patterns show
- strong peak in the morning and weak peak in the afternoon, indicating the important impact of human activities
- evident variations in the four seasons except for summer.
- Seasonal patterns show
- higher concentrations in winter and spring, lower values in summer, indicating the impact of meteorological conditions

Summary (cont.)

- PM_{2.5} became a serious air quality problem in Suzhou and surrounding regions. The USNAQS of PM_{2.5} was exceeded on 68% of total days in 2011 (Suzhou).
- R² values show that very little dependence of PM_{2.5} on other pollutants (e.g., SO₂, No_x, and O₃), and on temperature and relative humidity. Other important meteorological variables such as weather systems and PBL heights need further investigation, especially for PM_{2.5} episodes.

耶鲁大学-南京信息工程大学大气环境中心

Yale-NUIST Center on Atmospheric Environment

Next step

Do more detailed analysis

Analyze 2012 observational data

Write a manuscript for journal publication

耶鲁大学-南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment

Thank you

