

耶鲁大学-南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment

# A discussion on the paper "Uncertainty in simulating wheat yields under climate change"

Nature Climate Change IF:14.472(2012)

S.Asseng, F.Ewert, C.Rosenzweig et al.

Huang Xiaoying 2014-6-13

#### Outline

Introduction
Materials and Methods
Results
Discussion

# Introduction

- Multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models are difficult.
- Simulated climate change impacts vary across models owing to differences in model structures and parameter values.
- Uncertainties in simulated impacts increased with CO<sub>2</sub> concentrations and associated warming.

а

|                                  | Experiment<br>A <sup>a</sup> | Bp                   | C <sup>c</sup>   | Dq                   |  |  |
|----------------------------------|------------------------------|----------------------|------------------|----------------------|--|--|
|                                  |                              | 5                    | -                | 5                    |  |  |
| Location                         | Wageningen                   | Balcarce             | New Delhi        | Wongan Hills         |  |  |
| Country                          | The Netherlands              | Argentina            | India            | Australia            |  |  |
| Latitude                         | 51.97                        | -37.5                | 28.38            | -30.89               |  |  |
| Longitude                        | 5.63                         | -58.3                | 77.12            | 116.72               |  |  |
| Environment                      | high-yielding                | high/medium-yielding | irrigated short- | low-yielding rain-fe |  |  |
|                                  | long-season                  | medium-season        | season           | short-season         |  |  |
| Average growing season           | November-July                | June-December        | November-April   | May-December         |  |  |
| Soils                            |                              |                      |                  |                      |  |  |
| Soil type                        | Silty clay loam              | Clay loam            | Sandy loam       | Loamy sand           |  |  |
| Maximum Root depth (cm)          | 200                          | 130                  | 160              | 210                  |  |  |
| PAWC <sup>†</sup> (mm to maximum |                              |                      |                  |                      |  |  |
| rooting depth)                   | 354                          | 205                  | 121              | 125                  |  |  |
| Crop management                  |                              |                      |                  |                      |  |  |
| Cultivar                         | Arminda                      | Oasis                | HD 2009          | Gamenya              |  |  |
| Sowing date (DOY <sup>‡</sup> )  | 294                          | 223                  | 328              | 164                  |  |  |
| Total applied N fertilizer (kg   | 160                          | 120                  | 120              | 50                   |  |  |
| N/ha)                            | 100                          | 120                  | 120              | 50                   |  |  |
| Total irrigation (mm)            | 0                            | 0                    | 383              | 0                    |  |  |
| Phenology                        |                              |                      |                  |                      |  |  |
| Anthesis (DOY)                   | 178                          | 328                  | 49               | 275                  |  |  |
| Maturity (DOY)                   | 213                          | 363                  | 93               | 321                  |  |  |
| Experimental year                | 1982/83                      | 1992                 | 1984/85          | 1984                 |  |  |
| Mean growing season              | 8.8 °C                       | 13.7 °C              | 17.3 °C          | 14.0 °C              |  |  |
| temperature                      | 8.8 C                        | 15.7 C               | 17.5 C           | 14.0 C               |  |  |
| Mean growing season              | 595 mm                       | 336 mm               | 383 mm           | 164 mm               |  |  |
| precipitation                    | 555 11111                    | 550 1111             | 363 11111        | 104 11111            |  |  |
| Baseline                         |                              |                      |                  |                      |  |  |
| Mean growing season              | 8.5 °C                       | 12.0 °C              | 18.9 °C          | 16.2 °C              |  |  |
| temperature                      | 8.5 C                        | 12.0 C               | 18.9 C           | 16.2 C               |  |  |
| Mean growing season              | 74.6                         | 395 mm               | 467 mm*          | 246 mm               |  |  |
| precipitation                    | 716 mm                       | 395 mm               | 467 mm*          |                      |  |  |
| Climate change scenario          |                              |                      |                  |                      |  |  |
| GCM scenario examined            | ukmo_hadcm3                  | ncar_ccsm3.0         | mpi_echam5       | csiro_mk3.0          |  |  |
| Mean growing season              | 11.4 °C                      | 14.2 °C              | 23.6 °C          | 18.7 °C              |  |  |
| temperature                      |                              |                      |                  |                      |  |  |
| Mean growing season              |                              |                      |                  |                      |  |  |
| precipitation                    | 690 mm                       | 432 mm               | 583 mm*          | 164 mm               |  |  |
| precipitation                    |                              |                      |                  |                      |  |  |



| Model             | Leaf area / light<br>intercontion <sup>a</sup> | Light utilization <sup>b</sup> | Yield formation <sup>c</sup> | Phenology <sup>d</sup> | Root distribution<br>over denth ° | Environmental<br>constraints involved <sup>f</sup> | Type of water stress $^{\rm g}$ | Type of heat stress <sup>h</sup> | Water dynamics <sup>i</sup> | Evapotranspiration <sup>j</sup> | Soil CN-model <sup>k</sup> | Process modified by<br>elevated CO <sub>2</sub> <sup>1</sup> | No. cultivar<br>parameters | Climate input<br>variables " | Model relative <sup>n</sup> | Model type ° |
|-------------------|------------------------------------------------|--------------------------------|------------------------------|------------------------|-----------------------------------|----------------------------------------------------|---------------------------------|----------------------------------|-----------------------------|---------------------------------|----------------------------|--------------------------------------------------------------|----------------------------|------------------------------|-----------------------------|--------------|
| APSIM-Nwheat      | s                                              | RUE                            | Prt                          | T/DL/V                 | EXP                               | W/N/A                                              | S                               | v                                | С                           | РТ                              | CN/P(3)/B                  | RUE/TE                                                       | 7                          | R/Tx/Tn/Rd                   | С                           | Р            |
| APSIM-wheat       | S                                              | RUE                            | Prt/Gn/B                     | T/DL/V/O               | 0                                 | W/N/A                                              | Е                               | _                                | C/R                         | PT/PM                           | CN/P(3)/B                  | RUE/TE/CLN                                                   | 7                          | R/Tx/Tn/Rd/e/W               | С                           | Р            |
| AquaCrop          | S                                              | TE                             | HI/B                         | T/DL/V/O               | EXP                               | W/N/H                                              | E/S                             | V/R                              | С                           | PM                              | none                       | TE                                                           | 2                          | R/Tx/ETo                     | none                        | Р            |
| CropSyst          | S                                              | TE/RUE                         | HI/B                         | T/DL/V                 | EXP                               | W/N/H                                              | Е                               | R                                | C/R                         | PM                              | N/P(4)                     | TE/RUE                                                       | 16                         | R/Tx/Tn/Rd/RH/W              | none                        | Р            |
| DSSAT-CERES       | S                                              | RUE                            | B/Gn                         | T/DL/V                 | EXP                               | W/N                                                | E/S                             | -                                | С                           | PT                              | CN/P(4)/B                  | RUE/TE                                                       | 7                          | R/Tx/Tn/Rd/RH/W              | С                           | Р            |
| DSSAT-CROPSIM     | S                                              | RUE                            | Prt                          | T/DL/V                 | LIN                               | W/N                                                | E/S                             | v                                | С                           | PT                              | CN/P(4)/B                  | RUE/TE                                                       | 21                         | R/Tx/Tn/Rd/                  | none                        | р            |
| Ecosys            | D                                              | P-R                            | Gn-Prt                       | T/DL/V/O               | Call                              | W/N/A/H                                            | E/S                             | V/R                              | R                           | EB                              | P30/B5                     | F                                                            | 2                          | R/Tx/Tn/Td/Rd/W              | none                        | Р            |
| EPIC wheat        | S                                              | RUE                            | HI                           | T/V                    | EXP                               | W/N/H                                              | Е                               | v                                | С                           | P/ <b>PM</b> /P<br>T/HAR        | N/P(5)/B                   | RUE/TE/GY                                                    | 16                         | R/Tx/Tn/Rd/RH/W              | Е                           | P/G          |
| Expert-N - CERES  | S                                              | RUE                            | B/Gn                         | T/DL/V                 | EXP                               | W/N                                                | E/S                             | -                                | R                           | PM                              | CN/P(3)/B                  | RUE                                                          | 7                          | R/Tx/Tn/Rd/RH/W              | С                           | Р            |
| Expert-N - GECROS | D                                              | P-R/TE                         | Gn/Prt                       | T/DL/V                 | EXP                               | W/N                                                | E/S                             | -                                | R                           | PM                              | CN/P(3)/B                  | RUE/TE                                                       | 10                         | R/Tx/Tn/Rd/RH/W              | s                           | Р            |
| Expert-N - SPASS  | D                                              | P-R                            | Gn/Prt                       | T/DL/V                 | EXP                               | W/N                                                | E/S                             | -                                | R                           | PM                              | CN/P(3)/B                  | RUE                                                          | 5                          | R/Tx/Tn/Rd/RH/W              | C/S                         | Р            |
| Expert-N - SUCROS | D                                              | P-R                            | Prt                          | Т                      | EXP                               | W/N                                                | E/S                             | -                                | R                           | PM                              | CN/P(3)/B                  | RUE                                                          | 2                          | R/Tx/Tn/Rd/RH/W              | s                           | Р            |
| FASSET            | D                                              | RUE                            | HI/B                         | T/DL                   | EXP                               | W/N                                                | E/S                             | -                                | С                           | MAK                             | CN/P(6)/B                  | RUE                                                          | 14                         | R/Tx/Tn/Rd                   | none                        | Р            |
| GLAM-Wheat        | S                                              | RUE/TE                         | B/HI                         | T/DL/V                 | LIN                               | W/H                                                | Е                               | R                                | С                           | PT                              | none                       | RUE/TE                                                       | 22                         | R/Tx/Tn/Td/Ta/e              | none                        | G            |
| HERMES            | D                                              | P-R                            | Prt                          | T/DL/V/O               | EXP                               | W/N/A                                              | E/S                             | -                                | С                           | <b>PM</b> /TW/<br>PT            | N/P(2)                     | RUE/F                                                        | 6                          | R/Tx/Tn/Rd/e/RH/W            | S/C                         | Р            |
| InfoCrop          | D                                              | RUE                            | Prt/Gn                       | T/DL                   | EXP                               | W/N/H                                              | Е                               | V/R                              | С                           | $\mathbf{PM}/\mathbf{PT}$       | CN/P(2)/B                  | RUE/TE                                                       | 10                         | R/Tx/Tn/Rd/W/e               | S                           | Р            |
| LINTUL-4          | D                                              | RUE                            | Prt/B                        | T/DL                   | LIN                               | W/N/A                                              | Е                               | -                                | С                           | Р                               | N/P(0)*                    | RUE/TE                                                       | 4                          | R/Tx/Tn/Rd/e/W               | L                           | Р            |
| LINTUL-FAST       | D                                              | RUE                            | Prt                          | T/DL/V                 | EXP                               | W                                                  | Е                               | -                                | С                           | PM                              | CN/P(3)                    | RUE/TE                                                       | 4                          | R/Tx/Tn/Rd/RH                | L                           | Р            |
| LPJmL             | S                                              | P-R                            | HI_mws/B                     | T/V                    | EXP                               | W                                                  | Е                               | -                                | С                           | PT                              | none                       | F                                                            | 3                          | R/Ta/Rd/Cl                   | Е                           | G            |
| MCWLA-Wheat       | S                                              | P-R                            | HI/B                         | T/DL/V                 | EXP                               | W/H                                                | Е                               | V/R                              | R                           | PM                              | none                       | F                                                            | 7                          | R/Tx/Tn/Rd/e/W               | none                        | G            |
| MONICA            | S                                              | RUE                            | Prt                          | T/DL/V/O               | EXP                               | W/N/A/H                                            | Е                               | V                                | С                           | PM                              | CN/P(6)/B                  | F                                                            | 15                         | R/Tx/Tn/Rd/RH/W              | Н                           | Р            |
| O'Leary-model     | S                                              | TE                             | Gn/Prt                       | T/DL                   | SIG                               | W/N/H                                              | E/S                             | V                                | С                           | Р                               | N/P(3)/B                   | TE                                                           | 18                         | R/Tx/Tn/Rd/RH/W              | none                        | Р            |
| SALUS             | S                                              | RUE                            | Prt/HI                       | T/DL/V                 | EXP                               | W/N/H                                              | Е                               | V                                | С                           | РТ                              | CN/P(3)/B(<br>2)           | RUE                                                          | 18                         | R/Tx/Tn/Rd                   | С                           | Р            |
| Sirius            | D                                              | RUE                            | B/Prt                        | T/DL/V                 | EXP                               | W/N                                                | Е                               | -                                | С                           | P/PT                            | N/P(2)                     | RUE                                                          | 14                         | R/Tx/Tn/Rd/e/W               | none                        | Р            |
| SiriusQuality     | D                                              | RUE                            | B/Prt                        | T/DL/V                 | EXP                               | W/N                                                | S                               | -                                | С                           | P/PT                            | N/P(2)                     | RUE                                                          | 14                         | R/Tx/Tn/Rd/e/W               | Ι                           | Р            |
| STICS             | D                                              | RUE                            | Gn/B                         | T/DL/V/O               | SIG                               | W/N/H                                              | E/S                             | V/R                              | С                           | P/PT/<br><b>SW</b>              | N/P(3)/B                   | RUE/TE                                                       | 15                         | R/Tx/Tn/Rd/e/W               | С                           | Р            |
| WOFOST            | D                                              | P-R                            | Prt/B                        | T/DL                   | LIN                               | W/N*                                               | E/S                             |                                  | С                           | Р                               | P(1)                       | RUE/TE                                                       | 3                          | R/Tx/Tn/Rd/e/W               | S                           | G            |

In addition to simulations of the single-year experiments, simulations were carried out with long-term measured daily climate data (solar radiation, maximum and minimum temperature, precipitation, surface wind, dew point temperature, relative humidity, and vapor pressure) using measured soil characteristics, measured initial soil water and soil N contents, crop management, measured anthesis and maturity dates from the single-year-experiments.

Each of the 27 wheat models was used to simulate the field experiments in two separate steps, 1) with limited in-season information from the experiments being made available to the modelers (partial calibration or 'blind' simulations), and 2) all available information being made available to the modelers (full calibration).

\* Data analysis

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

$$x_k = \bar{y}_{future,k} - \bar{y}_{baseline,k}$$

$$CV\% = \frac{\sigma}{x} * 100$$
$$r_k = \frac{\bar{y}_{future,k} - \bar{y}_{baseline,k}}{\bar{y}_{baseline,k}} * 100$$



Uncertainty in simulated climate change impacts differed across the environments.

- In addition, uncertainty in simulated impacts varied with soil and crop management.
- Selecting a subset of models that perform best in present environments does not reduce uncertainty in simulated climate change impacts.



Simulated impacts of elevated CO<sub>2</sub> on yields varied relatively little across models, but the variation across 80% of the crop models increased under elevated CO<sub>2</sub> concentration mostly in the low-yielding environment of Australia.

Most simulated yield responses to a 180ppm CO<sub>2</sub> increase at present temperatures were within the range of measured responses, ranging from 8% to 26% with elevated atmospheric CO<sub>2</sub> concentrations across experiments conducted in the USA, Germany and China.



- An increased model uncertainty with increasing temperature is partly related to simulated phenology.
- For example, phenology is often enhanced with increasing temperature resulting in less time for light interception and photosynthesis and consequently less biomass and yield.



The increased model uncertainty is also partly due to an increased frequency of high-temperature events and its simulated impact on crop growth.



Simulated relative change in yield (%)

Precipitation affected simulated yields, but precipitation change had little impact on the range of simulated responses.



If averaging multi-model simulations is superior to a single crop or climate model simulation because the ratio of signal (mean change) to noise (variation) increases with the number of models and errors tend to cancel each other out, we should be able, with caution, to estimate how many models would be required for robust projections.



- The number of models required for robust assessments of climate change varied depending on the magnitude of temperature change and interactions with the change in atmospheric CO<sub>2</sub>.
- When simulating impacts assuming amidcentury A2 emissions scenario (556ppm of CO<sub>2</sub>) for climate projections from 16 downscaled GCMs using 26 wheat models, a greater proportion of the uncertainty in yields was due to variations among crop models than to variations among the downscaled GCMs.

# Discussion

- We conclude that projections from individual crop models fail to represent the significant uncertainties known to exist in crop responses to climate change.
- On the other hand, model ensembles have the potential to quantify the significant, and hitherto uncharacterized, crop component of uncertainty.
- Crop models need to be improved to more accurately reflect how heat stress and high-temperature-by-CO<sub>2</sub> interactions affect plant growth and yield formation.



# Thank you for your attention