

耶鲁大学-南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment

A discussion on the paper " CO_2 and its correlation with CO at a rural site near Beijing: implications for combustion efficiency in China"

Huang Wenjing 2016/09/16

Outline

- Background
- Material & method
- Results and discussion
- Conclusions

Background

- CO₂ is an important greenhouse gas in atmosphere which is influenced by a number of factors.
- China has surpassed the United States as the world's largest carbon emitter in 2006, but its overall CO₂ budget has large uncertainties.

Background

- In situ measurements of atmospheric CO₂ have been sparse in China , whereas bottomup emission inventories of CO₂ require an extensive network of CO₂ observations.
- CO is a product of inefficient combustion that has often been used as a tracer of CO₂ from combustion and the CO₂/CO correlation slope provides a signature of the source region's combustion efficiency.

Material & method

Location: 40°29' N, 116°46.45' E Prevailing winds: northwestly & southwestly Period: 51 months (2004.12-2009.2)

Fig. 1. A regional map shows the location of the site (white circle) relative to Beijing urban area and other population centers (yellow), major roads (red), airport (magenta), and terrain. The color shading indicates elevation from low (green – near sea level) to high (darkest brown corresponding to 1400 m). Miyun city is indicated by the red dot. Reproduced from Wang et al. (2008)

Material & method

Table 1. Data for continuous observations

	Data	Frequency
Investigative gases	CO, CO_2	hourly
Basic meteorological data	<i>T</i> , RH, wind speed, wind direction	
other pollutants	O ₃ , NO, NO _y ,SO ₂	

Material & method

- CO mixing ratios are measured by infrared absorption (Thermo Environmental Instruments 48CTL) (wang et al. 2008).
- The CO₂ mixing ratio is measured by the differential nondispersive infrared (NDIR) method (LI-COR Biosciences Li-7000).

Fig. 3. Monthly mean CO_2 at Miyun site and several NOAA/ESRL sites.

> Seasonal variations

Interannual variations

Table 2. Descriptive statistics of CO_2 observation from 2005 to 2008.

	2005	2006	2007	2008
mean (ppmv)	392.17	397.02	399.62	400.35
median (ppmv)	389.31	394.89	396.17	397.59
min (ppmv)	350.75	349.30	343.66	352.57
max (ppmv)	478.21	481.59	488.77	467.92
Data completeness	78.0%	81.7%	92.6%	84.4%

CO₂-CO Correlation

Background CO₂ $CO_{2,b} = CO_{2,i} + CO|_{5\%} \times dCO_2/dCO$

Fig. 7b. Background CO (b) derived at Miyun (green) compared to three ESRL sites (WLG, UUM, and TAP).

Fig. 8. The interseasonal (a) and annual (b) variations of CO₂ observed at Miyun (red) and background CO₂ (black) derived from the CO_2 -CO correlation analysis. 16

Interannual variations in CO₂/CO ratio in winter ➤ Initial evaluation

Table 3. The CO_2 -CO correlation slope (d CO_2 /dCO) and trend for winter observations at Miyun.

	Overal	1 data ³	CO-filte	ered data ²	NCN air m	nasses ³ (CO filtered)
Winter ¹	slope	error	slope	error	slope	error
2004	13.3	0.4	17.1	0.5	17.3	0.6
2005	21.8	0.4	23.5	0.6	23.8	0.9 2.61
2006	20.7	0.5	26.1	0.8	26.0	\sim -1.0 ppmv/ppm
2007	25.7	0.4	27.7	0.8	28.6	0 1.1 per year
2008	21.2	0.6	26.8	0.8	26.6	0.9 per year
Change in mean slope from						
2005-2006 and to 2007-2008	2.2 =	±0.5	2.5	± 0.8		2.8 ± 0.9

1 Winter refers to a period of three months

2 The CO-filtered dataset refer to the data with CO levels between the 30th–90th percentiles.

 3 CO_2 -CO scatter plots for the overall data and for the NCN air masses are shown in supplementary 17 material S.2 and S.3 respectively.

Fig. 9. The CO₂-CO correlationship slope (dCO_2/dCO) for winter observations at Miyun. The slopes are evaluated for the overall dataset (a), the CO-filtered dataset (with CO between the 30th and 90th percentiles) (b), and the CO-filtered northern China air masses (NCN) (c).

Fig. 10. Histogram (a) and cumulative probability distribution (b) of daytime CO mixing ratios in winter 2007 .

Fig. 12. (a) The number of observations in each winter by clusters;
(b) The fraction of each cluster in total observations in each winter

Table 4. Mean CO₂, CO, and their relationship for each air mass group (CO-filtered) over the five winters (2004–2008).

Cluster	Share (%)	Mean CO ₂ (ppmv)	Mean CO (ppmv)	Intercept (ppmv)	Slope (ppmv /ppmv)	R
CES	12	392.4	284.5	383.1±3.7	33.1±4.6	0.79
AC	19	396.3	496.6	385.0±2.2	23.0±6.7	0.93
NCN	69	400.2	666.1	384.2±3.5	24.4±4.4	0.94

> CO₂/CO ratio for NCN air masses

Fig. 13. Box plots of CO_2 (a) and CO (b) observations for the NCN air mass group at Miyun in winter, 2004–2008.

Case study

Table 5. Mean CO_2 and CO mixing ratio and their correlations for September 2005–2008.

		2005	2006	2007	2008
CO (ppbv)	Mean	586.80	482.14	615.10	385.25
	Median	450.52	441.49	566.09	303.03
	25-percentile	124.55	180.27	309.22	179.68
	75-percentile	821.15	640.87	813.32	553.13
CO2 (ppmv)	Mean	390.01	386.82	395.76	397.41
	Median	389.33	386.05	394.02	397.12
	25-percentile	381.81	377.63	385.85	385.94
	75-percentile	396.80	394.7	402.78	407,18
dCO2/dCO (ppmv/ppmv)		23.9 ± 8.4	27.7 ± 10.0	28.8 ± 5.6	46.4 ± 4.6
R		0.84 ± 0.05	0.65 ± 0.11	0.56 ± 0.14	0.76 ± 0.06

Table 6. dCO₂/dCO for October, November, and December, 2005–2008.

dCO ₂ /dCO (ppmv/ppmv)	Oct	Nov	Dec
Average for 2005-2007	24.8±4.3	21.5±5.2	23.2±2.4
2008	38.7±5.5	30.9±2.7	29.6±1.4

Conclusions

- Compared with CO₂ mixing ratios reported by ESRL for background sites at similar latitudes, monthly mean CO₂ mixing ratios at Miyun are 10 ppmv higher on average and exhibit irregular seasonal cycles, reflecting influence from local and regional sources and sinks.
- ✗ Annual growth of overall mean CO₂ is increasing by 2.7 ppmyr−1 while CO₂,b is only increasing by 1.7 ppm yr−1 suggesting relatively faster increase in the regional CO₂ sources in northern China than the global average.
- For NCN air masses, mean winter CO₂/CO correlation slopes (dCO₂/dCO) increased by 2.8±0.9 ppmv/ppmv or 11% from 2005–2006 to 2007–2008 which indicates improvement in overall combustion efficiency over northern China after winter 2007, attributed to pollution reduction measures associated with the 2008 Beijing Olympics.
- The observed CO_2/CO ratio at Miyun is 25% higher than the bottom-up CO_2/CO emission ratio, suggesting a contribution of respired CO_2 from urban residents as well as agricultural soils and livestock in the observations and uncertainty in the emission estimates.

耶鲁大学-南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment

Thanks for your listening !