

Anthropogenic CH₄ Emissions in the Yangtze River Delta Based on a Topdown Method

Reporter: HUANG Wenjing

2018.06.22

Background

Rice paddies Livestock

China emission/world total (EDGAR v4.2, 2012)

Anthropogenic CH₄ emissions:

50 - 65 %

Global CH₄ budget (2003–2012):

Uncertainty: 30% (global)

total emissions – total sinks= $10 \ (\pm 0.6) \ \text{Tg CH}_4/\text{yr}$ >100% (regional)

2012 CH₄ emissions $(0.1^{\circ} \times 0.1^{\circ})$

unit: ton/year/gridcell

Wetlands X

Site

Method

IPCC method

 CO_2

Activity data

Emissions

垃圾填埋场是全球重要的CH_4排放源.基于中国1955个数据库,核算了中国2012年垃圾填埋场CH_4排放水平,际容量的计算模型.2012年中国垃圾填埋场的CH_4排放量西藏排放量最低.华东地区的垃圾填埋场CH_4排放在77达到33.00%,西北地区排放占比最低,为8.76%;大型填埋45.88%.中国垃圾填埋场CH 4排放在空间分布上具有较

• • •

 $\lceil \pm 10 \%$

(min, max)] Monte

Monte Carlo [(min, max)]

Method

Atmospheric method

CH₄/CO₂

Source area?

Results

Half-hourly

The white points are 14-day moving averages.

(The arrow indicates the linear correlation at the P value of 0.05.) Summer in 2014 and winter in 2014 - 2015.

Scatter plots of winter (December – February) daytime CH₄ and CO₂ concentrations at MLW from 2012 to 2016.

Table 1. Anthropogenic CO₂ emissions in the Yangtze River Delta in 2012.

Sector	Emission (× 10 ¹¹ kg)	Percent of total (%)
Industrial energy consumption*	13.03 (± 11 %)	67.9
Industrial processes	$4.40 \ (\pm \ 10 \%)$	23.0
Transportation	$1.35~(\pm~18~\%)$	7.0
Household	$0.40 (\pm 8 \%)$	2.1
Total	$19.18 (\pm 10 \%)$	100

^{*}CO₂ emissions in manufacturing, commerce, and construction are also included in this sector.

Table 2. Anthropogenic CH₄ emissions in the Yangtze River Delta in 2012, based on the IPCC inventory method.

Sector	Emission (× 10 ⁹ kg)	Percent of total (%)
Rice cultivation	2.68 (± 12 %)	46.3
Landfill	$0.50~(\pm~35~\%)$	8.7
Wastewater treatment	$0.28~(\pm~40~\%)$	4.8
Livestock	$0.31 (\pm 14 \%)$	5.4
Fuel and Biomass burning	$0.32~(\pm~17~\%)$	5.6
Coal mining	$1.69 (\pm 30 \%)$	29.2
Total	$5.78 (\pm 21 \%)$	100

The annual average anthropogenic emission of CH₄:

 $(4.37 \pm 0.61) \times 10^9 \,\mathrm{kg}\,\mathrm{y}^{-1}$

top-down/bottom-up=1.2 - 1.7 times

Conclusions

- Results indicate that the emissions ratio fluctuates between 0.0055 ± 0.0006 and (winter of 2012 2013 and 2014 2015) and 0.0068 ± 0.0005 (winter of 2013 2014). These ratios are similar to those observed in Los Angeles and Pasadena, USA.
- According to the top-down method, the annual average anthropogenic emission of CH₄ in the YRD from 2012 to 2015 is $(4.37 \pm 0.61) \times 10^9$ kg y⁻¹ (excluding rice cultivation), which is 1.2 to 1.7 times the result from the IPCC inventory.
- We suggest that possible sources of the discrepancy include low biases in the IPCC calculation of emission from <u>landfills</u>, ruminants and the transport sector.

Next work

Half-hourly

Half-hourly (daytime)

Half-hourly (nighttime)

Daily (daytime)

Thank you!

