Temporal and spatial variability of greenhouse gases concentrations and fluxes in Lake Taihu

Zhenghua Hu

15 Mar. 2012

Outline

- 1 Background
- 2 Questions/Objectives
- 3 Methods
- 4 Results
- 5 Discussion
- 6 Conclusion

Mostly lakes (boreal, temperate, and tropical lakes) are typically supersaturated with CO₂, and act as sources of CO₂ and CH₄ emissions to the atmosphere (Cole et al. 1994; Schrier-Uijl et al. 2011).

➢ It has been estimated that lakes annually emit 513 Tg C CO₂ (Cole et al. 1994), and 8-48 Tg CH₄, which is 6-16% of the global natural CH₄ emissions (Bastviken et al. 2004; St. Louis et al. 2000).

CO₂ is produced by respiration and biological processes in sediments and water.

CH₄ emission is the balance of two counteracting processes: methanogenesis in anoxic conditions and the oxidation of the generated CH₄ (Minkkinen and Laine 2006; Schrier-Uijl et al. 2011). Most of the CH₄ that remains unoxidised will be emitted by diffusive flux to the atmosphere.

Fig. Simplified illustration of CO_2 and CH_4 dynamics in water bodies (OM,organic matter) (Schrier-Uijl et al. 2011).

- N₂O generation in lakes generally requires steep oxygen gradients allowing sequential aerobic nitrification and anaerobic denitrification to take place (Seitzinger 1990).
- The eutrophic lakes could be supersaturated with N₂O and act as sources of N₂O to the atmosphere. While, the shallow lakes are not large sources for atmospheric N₂O (Huttunen et al. 2003).
- The freshwater lakes are only moderate sources of N₂O (Mengis et al. 1997).

- Yet though it is likely that lakes with organic-rich sediment contribute especially significantly to regional greenhouse gas balances, they are poorly studied and very little is known about their underlying biogeochemical processes (Saarnio et al. 2009).
- More data are needed from lakes situated in different geographical regions to obtain a better estimate of the atmospheric importance of natural lakes (Huttunen et al. 2003).

Lakes have not been incorporated in previous regional or global greenhouse gas budgets.

2 Questions

How to quantify shallow freshwater lakes contribute to the greenhouse gas.

>Which factors regulate the flux.

Lake Taihu acts as a source or sink of greenhouse gas (CO₂/CH₄/N₂O).

Objectives

- To quantify CO₂, CH₄, and N₂O fluxes from Lake Taihu.
- To identify the factors that regulate the emissions of CO₂, CH₄, and N₂O from lake.

Significance: Data on lake-atmosphere greenhouse gas exchange would improve our understanding of the fundamentals of regional greenhouse gas budgets.

3 Methods

3.1 Study sites

Sampling site

3.2 Measurements and calculation of GHG concentration

Pure nitrogen gas (99.999%) 2% CuSO4

GHG concentration of gas in headspace

 $\frac{CH_4 标准气体浓度}{CH_4 标准气体峰面积} =$

______样品气体 CH₄浓度 样品气体 CH₄峰面积

Calculation of GHG concentration in water of lake

 $[X]_{L^{0}} = [X]_{G} \times (1/K + \beta)$

 $\mathsf{K} = [\mathsf{X}]_{\mathsf{G}} / [\mathsf{X}]_{\mathsf{L}}$

 $\beta = V_G / V_L$

[X]_G measured by GC [X]_L calculated by material equilibrium

3.3 Calculation of GHG fluxes

$$F = k \times (Cw - Ceq) \tag{1}$$

where k is the gas transfer coefficient (m d⁻¹), Cw the measured GHG concentration (mol m⁻³) in the surface water (at the depth of 20 cm), Ceq the GHG concentration in water that is in equilibrium with the atmosphere at in situ temperature.

$$k/k_{600} = (\text{Sc/Sc}_{600})^{-n}$$
⁽²⁾

where Sc is the Schmidt number, Sc₆₀₀ is the Schmidt number 600 at the temperature of 20 °C. The factor k_{600} is the corresponding value for Sc600. n = 0.5, $U_{10} > 3.7$ m s⁻¹; n = 2/3, $U_{10} < 3.7$ m s⁻¹.

$$k_{600} = 2.07 + 0.215 \times U_{10}^{1.7} \tag{3}$$

$$U_{10} / U = \ln(10/Z_0) / \ln(3.5/Z_0)$$
(4)

 Z_0 , roughness height, $Z_0 = 0.00035$ m; U, wind speed at 3.5 m height.

4 Results

4.1 Temporal variability of CO₂/CH₄/N₂O concentration

4.2 Spatial variability of CO₂/CH₄/N₂O concentration

CO₂ concentration

CH₄ concentration

N₂O concentration

Mean GHG concentration of half lake

4.3 Temporal variability of CO₂/CH₄/N₂O fluxes

Site: MLW

Date

4.4 Spatial variability of $CO_2/CH_4/N_2O$ fluxes

CO₂ fluxes

CH₄ fluxes

N₂O fluxes

Mean GHG fluxes of half lake

Feb

Jan

Date

Dec

Nov

0.02

0.00

Aug

Sep

4.5 Relationship between micromet and GHG concentration/fluxes

• CO₂ concentration-

Site: MLW

• CH₄ concentration-

• CO₂ fluxes-

Wind speed (m/s)

• CH₄ fluxes-

• N₂O fluxes-

Wind speed (m/s)

4.6 Relationship among CO₂,CH₄,and N₂O concentration

4.7 Relationship among CO_2 , CH_4 , and N_2O fluxes

4.8 Net annual global warming potential (GWP)

We adopted the IPCC factors to calculate the combined GWPs for 100 years.

GWP = 25 × CH₄ + 298 × N₂O + CO₂ (kg CO₂-equivalents ha⁻¹ yr⁻¹)

Ecosystems₽	Site₽	GWP (kg CO₂-equivalents ha⁻¹ yr⁻¹)₀
Lake₽	Lake Taihu₀	55 268₽
Cropland*₽	Taoyuan,ल Hunan Provinceल	12 587₽

*, Shang et al. 2011. Global Change Biology+

5 Discussion

5.1 N, P, and OM input in catchment

- Due to the close linkage between Lake Taihu and its catchment, it is obvious that catchment disturbances can disturb the lake greenhouse gas emissions.
- Lake Taihu CO₂ saturation can additionally be enhanced by inputs of DOC from catchment.
- Increased nutrient input into Lake Taihu causes eutrophication. Anoxic conditions can increase CH₄ emissions from lake by enhancing the CH₄ production and/or decreasing the CH₄ oxidation.
- Low oxygen availability can also promote N₂O production.

5.2 Water quality characteristics

- CO₂ and CH₄ production and emission are regulated by variable such as sediment and water temperature, oxygen availability, organic matter, sediment and water chemistry, pH, EC (Schrier-Uijl et al. 2011; Juutinen et al. 2009).
- CH₄ production depends on the availability of alternative electron acceptors: O₂, NO₃⁻, Fe³⁺, and SO₄²⁻ (van Bodegom and Scholten 2001).

5.3 CH_4 ebullition

> Ebullition can also contribute to the emission of CH_4 from lakes (Walter et al. 2006,2007).

Ebullition was observed in two lakes and accounted for 19-37% and 11-40% of the total CH₄ emissions in a summer study (Repo et al. 2007).

In our study, only diffusive fluxes of CH₄ were measured.

Fig. 3. The CH4 emissions measured by the chambers and the CH4 ebullition monitored by the funnel gas collectors at the stations at different depths in the highly eutrophic Lake Kevätön in 1998. Note different scales in each part. Error bars represent standard deviation.

Huttunen et al. 2003

5.4 GHG fluxes from different ecosystems

Ecosystem.	Flux (mg m ⁻² d ⁻¹) ₄)¢	References₽
ц.	CO ₂ ,2	$CH_{4^{e^2}}$	N₂O₽	ц.
Bireak/temperate forest₽	-210042	-1.042	¢	Crill 1991, Savage et al.1997₽
Tropical forests₽	-7100	-0.2*	÷	Keller et al.1986, Phillips et
				al.1998₽
Northern peatlands₽	-2300	51 <i>-</i>	÷	Gorham 1991₽
Temperate reservoirs₽	1500¢²	20 ₽	÷	Vincent et al.2000@
Tropical reservoirs₽	3500e2	100+2	÷	Vincent et al.2000@
Lakes (worldwide).	7 00 ¢	9₽	÷	Cole et al.1994, Schlesinger 1997 $_{e}$
Finnish lakes₽	ę	с,	0.050	Huttunen et al. 2003.
Lake Taihu@	¢.	с,	0.52+2	Wang et al. 2009¢
Lake Taihu@	¢.	3.4₽	÷	Wang et al. 2006¢
Lake Taihu@	1506 7₽	2.76₽	0.02*2	Our study₽

6 Conclusion

- > Lake Taihu is a source of CO_2 and CH_4 emissions to the atmosphere.
- Lake Taihu is a moderate source of N₂O emissions to the atmosphere.
- Lake Taihu had a higher GWP.
- GHG Concentration and flux had significant relationship to meteorological factor, such as water temperature, air temperature, and wind speed.

Thank you