

Application of the Keeling Plot Method to Determining the Isotopic Composition of Surface Water Vapor Flux Using High-Frequency Observations

HU Yongbo 2018.7.6

Outline

- Introduction
- Data and Methods
- Results and Discussion
- Conclusions

Introduction

> The isotopic composition of evapotranspiration and evaporation can provide us a unique insight in the study of water cycle (Gat, 1996).

► Keeling plot method has been widely used in the calculation of δ_E . And the result of Keeling plot can be affected by the choose of regression method (Wehr and Saleska, 2017) and the sample size N (Zobitz et al., 2006; Good et al., 2012).

Objectives

- To calculate $\delta_{\rm E}$ using Keeling plot method based on high-frequency data.
- > To find a better regression method for Keeling plot method, through comparing $\delta_{\rm E}$ calculated by Keeling plot method with flux gradient method.

Data and Methods

Keeling Plot

the observed, background and source.

Regression Methods

> Ordinary Least-Squares Regression (OLS) In OLS, the error in x is negligible and the error variance for the \hat{y}_i does not vary with *i*.

Geometric Mean Regression (GMR)

In GMR, the x error divided by the variance of the \hat{x}_i is equal to the variance of the y error divided by the variance of the \hat{y}_i .

York's Solution (YS)

In YS, independent points have normally distributed errors in both x and y.

(York, 1968, 2004; Wehr and Saleska, 2017)

Determining of the parameters in YS

Heihe

Measurement error standard deviations of δ ¹⁸O

Measurement error standard deviations of 1/c

Correlation coefficient between δ^{18} O errors and 1/c errors

Flux Gradient

(Xiao et al., 2017)

Data selection

Different δ_E _std

Different r

Selection criteria:

- δ_{E} std < 10
- p < 0.05
- Wind Direction Selection: [140 315) for Lake Taihu

	Heihe	Lake Taihu
Total Hour	3026	1525
After WD Selection	3026	349
After Selection	786	195
Percentage	26.0%	55.9%

Results and Discussion

Comparison of the three regression methods

Comparison of the three regression methods

Comparison of the three regression methods

Inlet selection (Heihe)

Lower level

-20 -20 -20 -10 0 10 20 -10 10 20 0 -20 -10 10 0 Gradient (⁰/00) Gradient (⁰/00) Gradient (⁰/00)

20

Inlet selection (Lake Taihu) Lower level

Conclusions

- > High-frequency data can be used to calculate $\delta_{\rm E}$ in Keeling plot method.
- Using two levels observed data can get better KP results.
- Using OLS or YS regression method in Keeling plot can get consistent results with flux gradient method.

耶鲁大学-南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment

Thanks for your attention!