

江苏省大气环境监测与污染控制高技术研究重点实验室

JIANGSU KEY LABORATORY OF ATMOSPHERIC ENVRONVENT MONTORNG&POLLUTION CONTROL

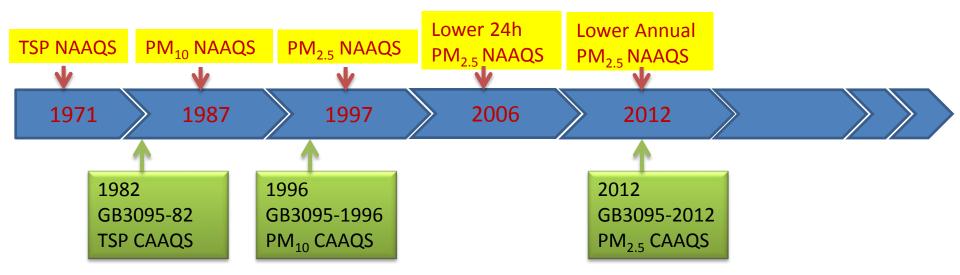
Predicting and Identifying Concentrations and Sources of Ultrafine Particulate Matter in California for Health Effect Studies

Jianlin Hu (胡建林)

Email: hu_jianlin@126.com

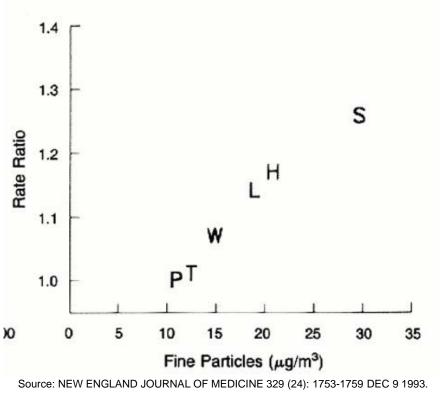
Phone: 025-58731504

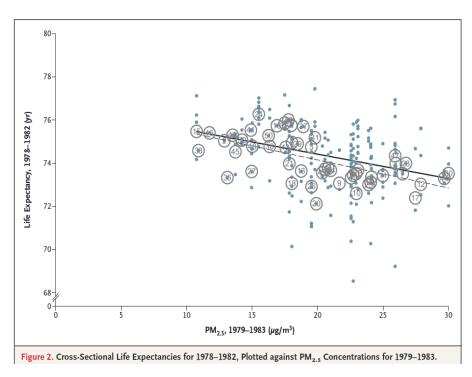
Cell: 18114808324


Yale-NUIST Center on Atmospheric Environment 2015.9.11, Nanjing

Acknowledgement

- Advisor: Michael J. Kleeman
- Lab members:
 - Hongliang Zhang, Abdullah Mahmud, DJ Rasmussen, Mark Hixson, Cody J. Howard
- Collaborators:
 - Bart Ostro, Qi Ying, Olivier Laurent, Jun Wu, Shuhua Chen
- Funding Support:
 - U.S. Environmental Protection Agency
 - California Air Resources Board
 - UC Atmospheric Aerosol and Health Grant

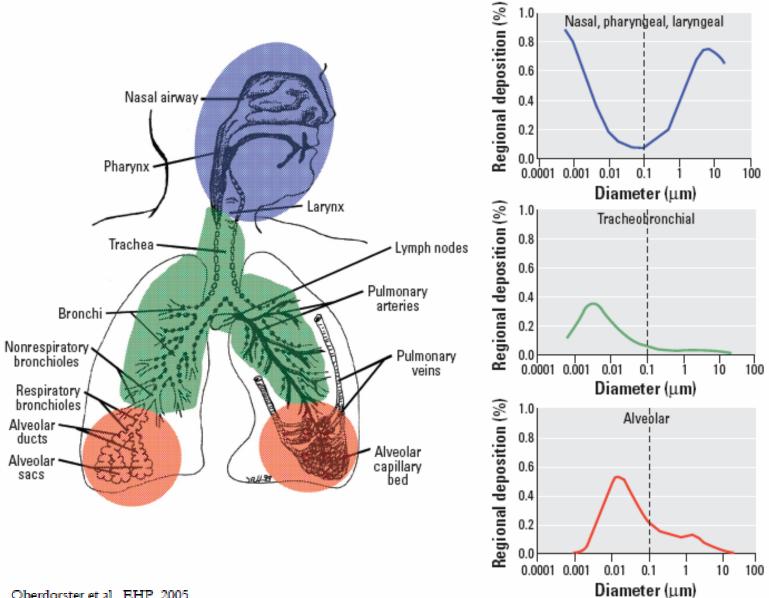

Evolution of Ambient Particulate Matter Standards


- TSP = total suspended particles
- NAAQS: National Ambient Air Quality Standards
- CAAQS: China Ambient Air Quality Standards

PM_{2 5} Standards Based on Evidence from Epi. Studies

 consistent associations between outdoor PM concentrations and adverse health effects

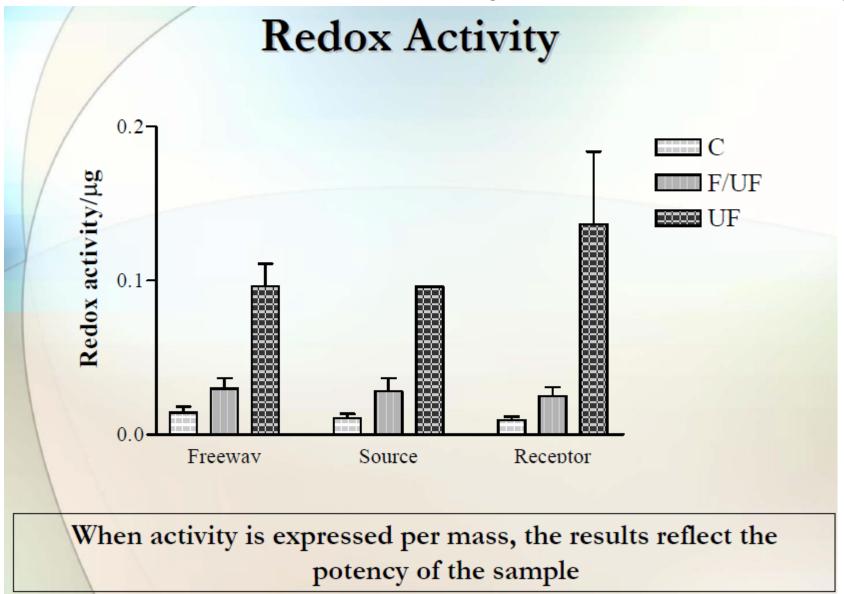
- NEW ENGLAND JOURNAL OF MEDICINE 360 (4): 376-386, 2009.
- 2. Epidemiology. 24(1): 23-31, 2013.


An increase of 10 $\mu g/m^3$ in the PM_{2.5} concentration was associated with a reduction in life expectancy of 0.46 ± 0.22 (p=0.039) in 1979-1983, 0.37±0.20 (p=0.091) in 1997-2001, and 0.35±0.16 (p=0.033) in 2000-2007

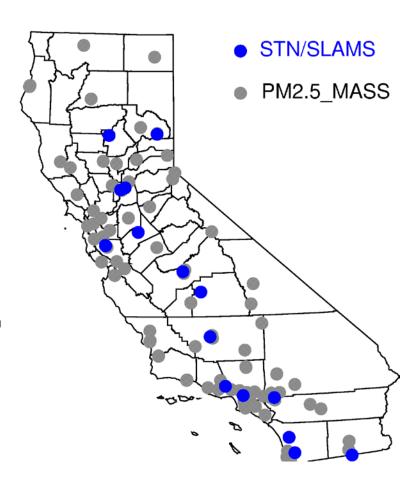
The Injury Mechanisms of PM Remains Unknown

- Health Effects Associated with PM Exposure
 - Autonomic nervous system
 - Development: Low birth weight/preterm birth
 - Increase in asthma and other respiratory disease in children
 - Decrease in lung development and function in children
 - Cardiovascular disease including atherosclerosis in adults
 - Cancer
- All airborne PM is toxic to some degree; potency is based on physical and chemical characteristics
 - What PM sizes
 - What PM compositions
 - What PM sources

are responsible for observed health effects?


Ultrafine Particles Have an Important Role in Toxicity

Oberdorster et al., EHP, 2005

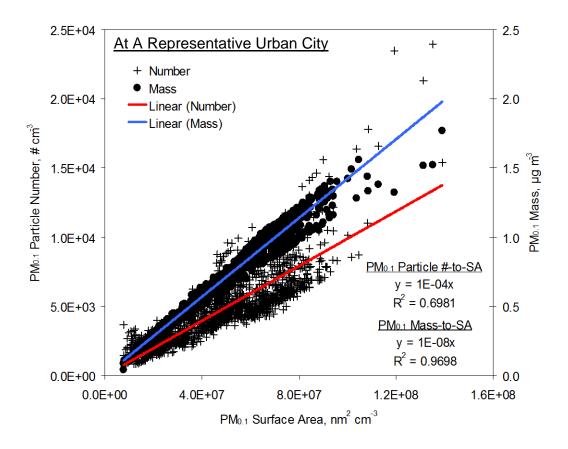

6

Ultrafine Particles Have an Important Role in Toxicity

Why No Ultrafine/PM0.1 Standards

- Because no consistent evidence from epidemiological studies
 - Due to limited scientific information about PM0.1 characteristics
 - PM0.1 number? Surface area?Mass?
 - PM0.1 chemical composition?
 - PM0.1 sources?

Ultrafines and Surface Area

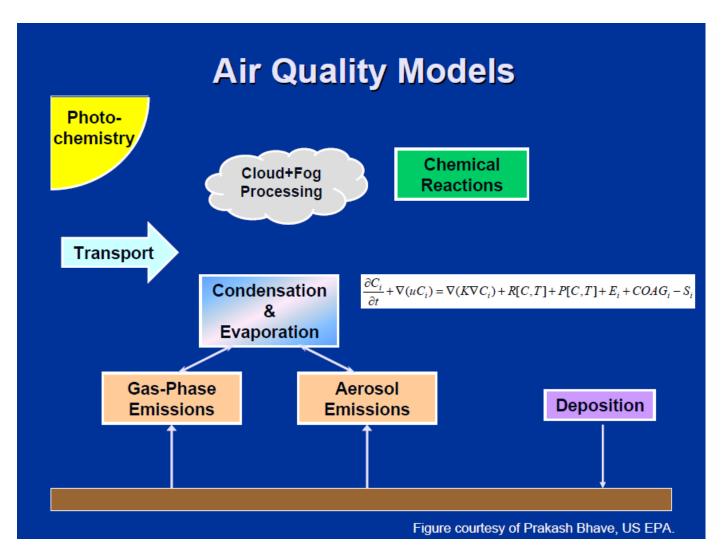

- Ultrafine particles have the high surface area-tovolume ratio that can provide numerous sites for heterogeneous reactions. (Seaton and Macnee, 1995)
- Particle surface area may be most appropriate parameter to evaluate inflammatory potential and predict adverse effects of UFP (Stoeger, 2006)
- Most epidemiological studies have used particle number concentration as a surrogate for particle surface area

Challenges for Ultrafine Modeling

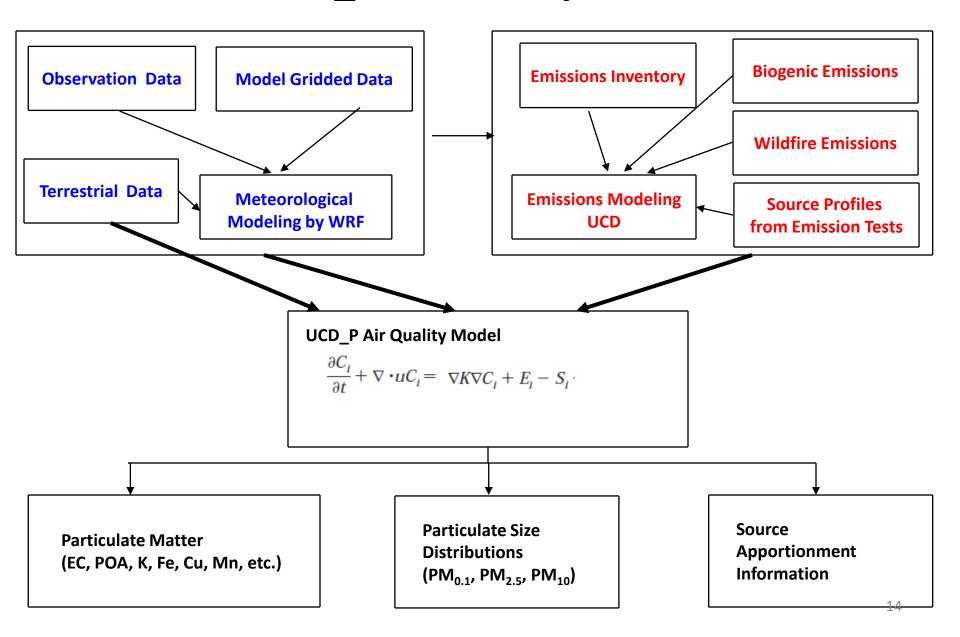
- 1. Sharp spatial gradient in particle number concentrations
- 2. Incomplete theory about particle nucleation, coagulation
- 3. Limited source emission profiles about UFP
- California is an ideal place for developing UFP modeling studies
 - Long study history of air quality modeling
 - The richest ambient UFP measurement dataset available for model validation
 - The most accurate emissions inventories
 - The most health effect study groups of any state in the United States

UFP Mass vs. UFP numbers

•Recent study (Marheit et al. 2006) indicated that PM_{0.1} mass is closely aligned with particle surface area



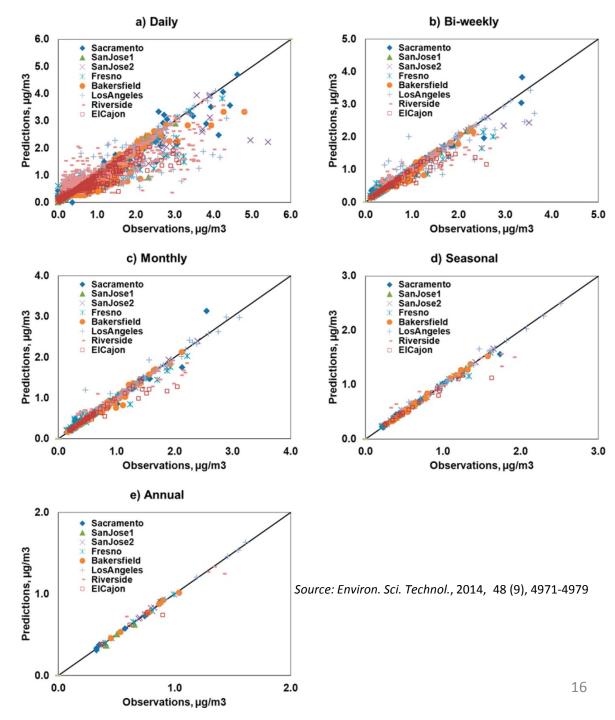
Source: Environ. Sci. Technol., 2013, 47 (24), pp 13957-13966


UFP Modeling Study for California

- UCD_Primary air quality model system for modeling UFP mass concentrations, chemical compositions, and sources
 - Track ~900 primary sources
 - No nucleation, no gas-particle conversion
 - 4 km resolution
 - 7 years, 2000-2006
- WRF for meteorology fields
- In-house tools for emission processing
 - ~300 UFP source profiles (size, composition)

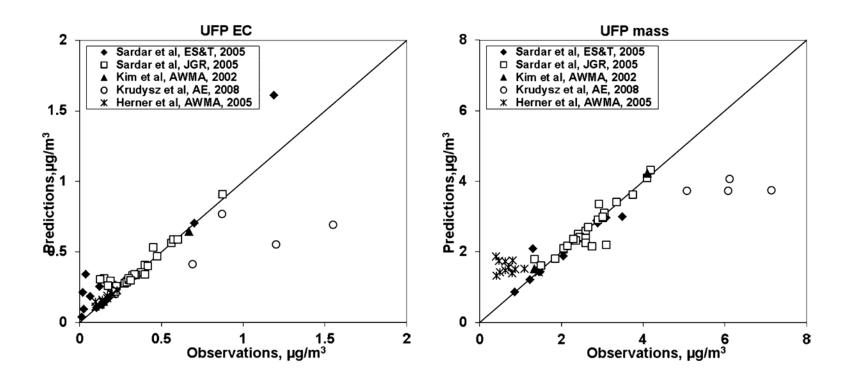
Air Quality Models

UCD_P Air Quality Model


Our Cluster

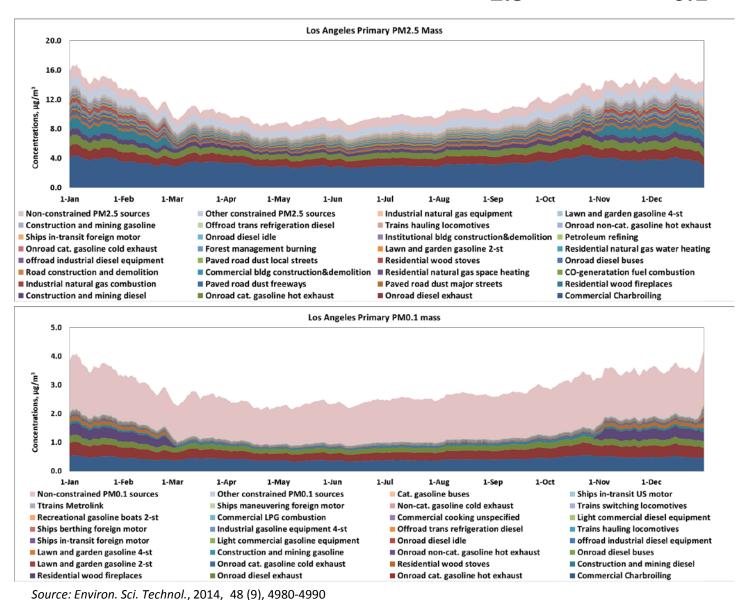
PM_{2.5} EC

Model works better with longer averaging time (>1 month)

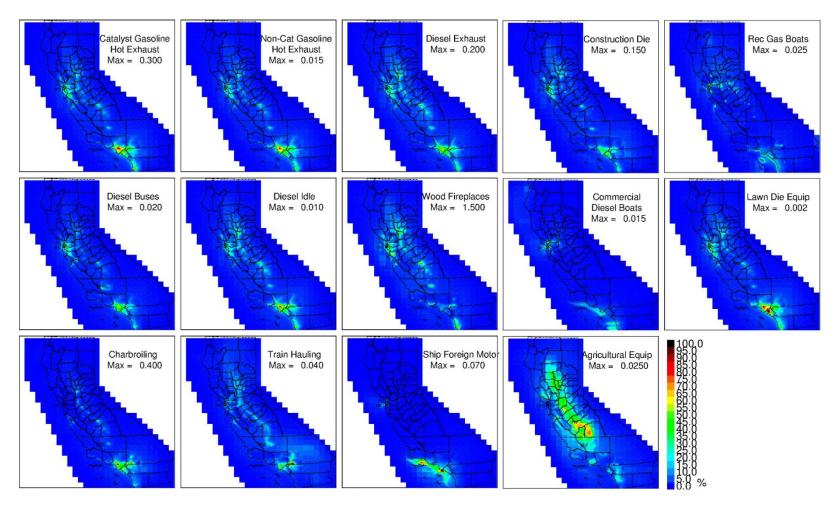

Model Predicts well for Some Chemical Components, but not All

Species	Sacramento	SanJose1	SanJose2	Fresno	Bakersfield	LosAngeles	Riverside	ElCajon
EC	0.02	0.00	0.00	0.02	-0.02	0.03	0.04	-0.04
K	0.02	-0.04	-0.04	0.02	-0.11	-0.03	0.01	-0.14
CR	-0.22	0.08	-0.04	0.08	-0.07	0.02	0.03	-0.06
ZN	0.08	0.01	-0.01	-0.16	-0.03	-0.03	-0.35	0.00
FE	0.71	0.06	0.20	0.65	0.14	0.13	0.23	0.05
TI	0.33	-0.01	0.05	0.33	-0.01	0.03	0.02	0.01
AS	-0.14	-0.03	-0.01	-0.41	-0.81	0.01	-0.01	-0.03
∞	0.05	0.00	0.00	-0.64	0.09	0.55	0.56	-0.60
SR	0.04	-0.08	-0.05	-0.01	-0.13	-0.31	-0.10	-0.10
CA	0.35	-0.05	0.01	0.33	-0.01	-0.09	-0.07	-0.02
MN	0.49	0.01	0.22	0.58	0.20	0.03	0.07	0.00
AL	0.89	0.55	0.57	0.96	0.48	0.80	0.31	0.28
SI	0.84	0.15	0.42	0.78	0.34	0.27	0.10	0.12
CU	-0.47	-0.07	-0.24	-0.44	-0.68	-0.06	-0.03	-0.53
NI	-0.43	-0.97	-0.39	-0.16	0.02	0.02	0.03	-0.60
PB	-0.46	-0.24	-0.11	-0.73	-0.82	0.00	-0.02	-0.08
V	-0.43	-0.83	-1.02	-0.05	-0.21	-0.18	-0.12	-0.42
MO	-0.62	-1.33	-1.22	-0.79	-0.88	-0.75	-0.04	-1.79
RB	-0.36	-0.83	-0.68	-0.39	-0.57	-0.27	-0.16	-0.87
BA	-1.17	-1.17	-0.45	-0.75	-1.48	-0.58	-1.15	-1.15
CD	-1.80	-0.82	-1.00	-1.87	-1.42	-0.92	-0.69	-1.52
MG	-1.32	-1.55	-1.51	-1.47	-1.63	-1.45	-1.67	-1.54
NA	-1.71	-1.92	-1.87	-1.60	-1.61	-1.65	-1.64	-1.88
R	0.8~1	0.6~0.8	0.3~0.6	0~0.3	R≤0	-		

- Mean
 Fractional Bias
 in numbers
- correlation coefficients in colors

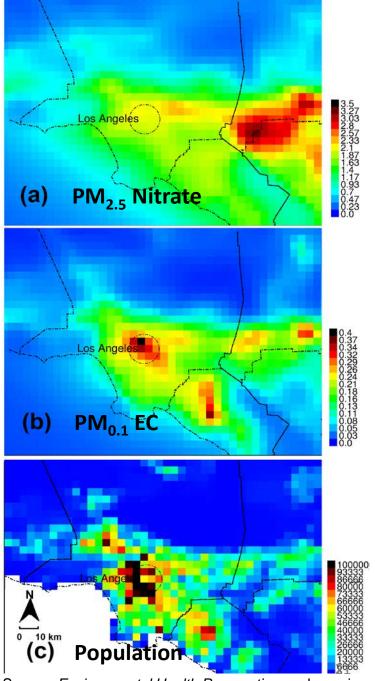

Source: Environ. Sci. Technol., 2014, 48 (9), 4971-4979

Overall Model Has Good Performance on PM_{0.1} mass and PM_{0.1} EC, but Not Perfect

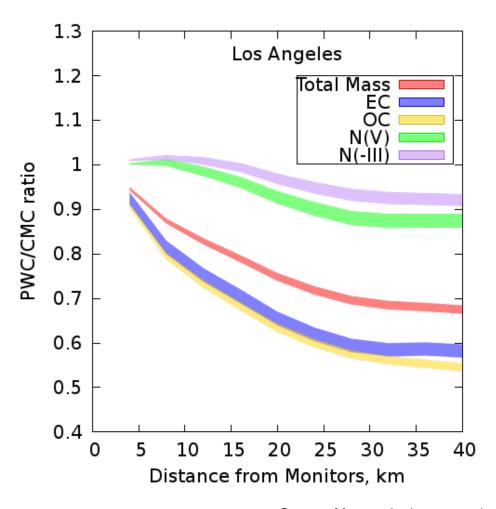


Source: Environ. Sci. Technol., 2014, 48 (9), 4971-4979

Sources of Primary PM_{2.5} and PM_{0.1}

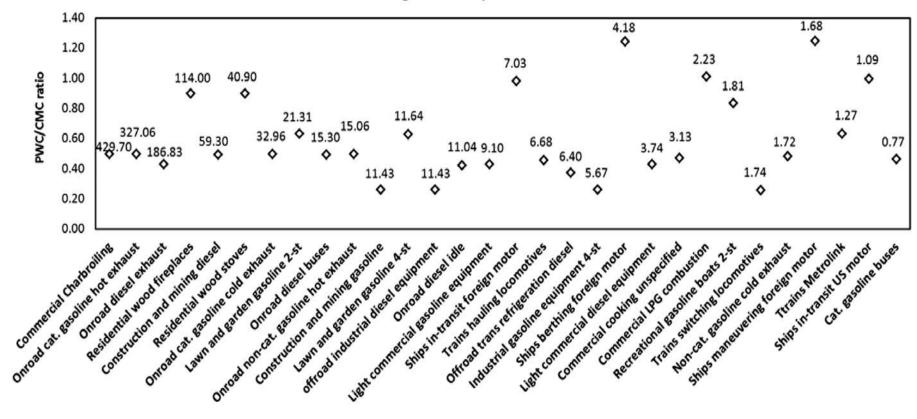

Regional Source Contributions of PM0.1

Source: Environ. Sci. Technol., 2014, 48 (9), 4980-4990


Air Pollution Exposure

- Strong spatial heterogeneity in concentrations and population
- Use one or a few monitor sites to represent an entire county/air basin could lead to exposure misclassification
- Population weighted concentrations (PWC) $PWC = \frac{\sum_{i} C_{i} P_{i}}{\sum_{i} P_{i}}$

Source: Environmental Health Perspective, under review


Are We Under-Estimating the Health Effects of Particulate Matter?

Source: Manuscript in preparation.

Significant Difference Exists for PWC/CMC Ratios among Sources

Hazard Rates for UFP Mass and Constituents Associated with Ischemic Heart Disease

Table 5. Hazard ratios (HR) and 95% confidence interval (CI) for association of UF with Ischemic Heart Disease Mortality.

Pollutant	HR	Low CI	Upper CI	p-value
Mass	1.10	1.02	1.18	0.01
Cu	1.06	1.03	1.09	< 0.0001
Fe	1.03	1.00	1.06	< 0.05
Mn	1.00	0.99	1.01	0.62
Nitrate	-			
EC	1.15	1.06	1.26	< 0.001
OC	1.08	1.01	1.15	< 0.05
Other Compounds	1.10	1.04	1.16	< 0.001
Other Metals#	1.13	1.05	1.21	< 0.01
SOA biogenic	1.10	1.02	1.19	< 0.01
SOA anthropogenic	1.25	1.13	1.39	< 0.001
S1: On-road gasoline	1.12	1.04	1.22	< 0.01
S2: Off-road gasoline	1.14	1.04	1.24	< 0.01
S3: On-road diesel	1.13	1.03	1.24	< 0.01
S4: Off-road diesel	1.14	1.05	1.23	< 0.01
S5:Wood smoke	0.95	0.89	1.02	0.20
S6: Meat cooking	1.11	1.03	1.20	< 0.01
S7: High sulfur fuel combustion	1.08	1.04	1.12	< 0.0001
S8: Other anthropogenic	1.06	1.01	1.10	0.01

[#]Besides Cu, Fe, and Mn; S1-S8 indicate sources of primary particles

Source: Environ. Health Persp, 2015

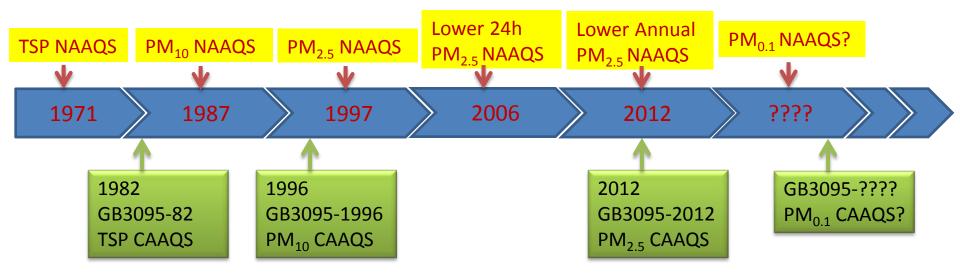
Low Birth Weight (LBW, <2.5 kg) Is Associated With Air Pollution

- Odds Ratio of LBW per IQR associated with primary PM_{2.5}
 - Mass = 1.025 (1.017, 1.033)
 - Gasoline = 1.027 (1.018, 1.036)
 - Wood Burning = 1.020 (1.009, 1.031)
 - Com. meat cooking = 1.019 (1.013, 1.024)
- Odds Ratio of LBW per IQR associated with primary PM_{0.1}
 - Mass = 1.026 (1.018, 1.034)
 - Gasoline = 1.028 (1.019, 1.037)
 - Wood burning = 1.024 (1.013, 1.035)
 - Com. meat cooking = 1.019 (1.013, 1.024)

Summary

- 7-year UFP mass and sources modeling results for health effect studies in California
- Model generally captured concentrations of FP and UFP of certain compositions, but not all
- Model works better with longer averaging time
- Significant spatial heterogeneity of UFP among sources
- Large bias is expected if not considering the spatial heterogeneity
- UFP is found be associated with ischemic heart disease and low birth weight risks.

On-going and Future Studies


Direct surface area modeling

1 km or less air quality modeling

Full chemistry modeling

Evolution of Ambient Particulate Matter Standards

- TSP = total suspended particles
- NAAQS: National Ambient Air Quality Standards
- CAAQS: China Ambient Air Quality Standards

Thank You!