NH₃ inversion project and the primary results in the U.S. Corn Belt Cheng Hu, Tim Griffis #### **Motivations** - Atmospheric ammonia (NH₃) has increased dramatically in response to the production of synthetic nitrogen (N) fertilizer and proliferation of livestock, there are numerous unintended consequences in atmospheric, terrestrial and aquatic systems [de Klein et al., 2006; Shcherbak et al., 2014]. - Agricultural intensification during the 20th century has increased global soil nitrogen (N) surpluses from 20 to 138 Tg y⁻¹, with projected excesses of 170 Tg y⁻¹ by 2050 [*Bouwman et al.*, 2013]. Growing synthetic fertilizer use has been accompanied by increases of 470% in ammonia (NH₃) [*Bouwman et al.*, 2013]. - Agricultural systems are having a profound influence on the global nitrogen (N) cycle and the flux of reactive nitrogen (N_r) into the atmosphere [*Erisman et al.*, 2008; *Zhang et al.*, 2015]. Knowledge regarding the NH₃ budget of the US Corn Belt is lagging far behind that for N₂O. Based on satellite observations, the US Corn Belt has been identified as a global hotspot for NH₃ emissions [*Van Damme et al.*, 2014, 2015]. Figure 1. Livestock farms (all animal types) according to size (total animal units = totalau in legend) in Southern Minnesota and Iowa. The land cover is from the National Land Cover Database, brown represents cultivated crops, and yellow pasture/hay. **Table 1. Ammonia Emissions for Animal Husbandry in the United States** United States Environmental Protection Agency, National Emissions Inventory-Ammonia Emissions from Animal Husbandry Operations. | | Ammonia Emissions (tons per year) | | | | | | |---------|-----------------------------------|---------|---------|---------|---------|--| | Animal | 2002 | 2010 | 2015 | 2020 | 2030 | | | Group | | | | | | | | Dairy | 558,094 | 565,892 | 547,874 | 545,155 | 546,666 | | | Beef | 656,648 | 691,174 | 689,669 | 705,659 | 733,662 | | | Poultry | 664,238 | 648,200 | 720,449 | 770,068 | 869,348 | | | Swine | 429,468 | 485,223 | 512,458 | 529,288 | 518,082 | | Installation of Teflon Lines for measuring NH3 mixing ratios at 56 m and 100 m #### **LGR Cavity Ring-down System for NH3 Measurement** #### **Wet Deposition Measured at Tall Tower** #### **Preliminary Measurements** Figure 2. Time series of NH3 and sonic temperature measured at the tall tower Figure 3. Comparison between our tall tower observations with AMoN NH₃ observation systems. (a) (b) (c) (d) Figure 4. Relationship between NH₃ concentration and wind directions. Figure 5. Diurnal variation of NH₃ concentration at 2 heights. (a) (b) Figure 6. Observed NH₃ net flux by gradient method. Figure 8. Observed wet deposition of NH_x around our tall tower. #### **Preliminary Modeling results** *NH₃, NH4⁺ concentration *dry/wet deposition of NH₃ and NH4⁺ # General idea of NH₃ inversion WRF-STILT model: Footprint WRF-CHEM model: NH3 dry/wet deposition, NH⁴+ dry/wet deposition Figure 9. WRF-CHEM domain setup. ## WRF-CHEM model layers Figure 10. NH₃ emissions in June and December. | | June | November | December | |---|-------|----------|----------| | NH ₃ emissions (nmol m ⁻² s ⁻¹) | 2.736 | 1.751 | 0.820 | Figure 11. Emission map for NO₂(left) and SO₂ (right). 43 N 95 W 94 W 9 Longitude 93 W 92 W Figure 13. Comparison between modeled and observed NH₃ concentration in June 2017. Figure 14. Monthly averaged diurnal variation of NH₃ concentrations in June. Figure 15. NH_x maps for a) dry deposition of NH_3 , b) wet deposition of NH_3 , c) dry deposition of NH_4^+ , and d) wet deposition of NH_4^+ , respectively. Table 2. NH_x flux balance for dry and wet deposition. | | NH_3 | NH_3 | NH_3 | $\mathrm{NH_4}^+$ | $\mathrm{NH_4}^+$ | |---|-----------|----------------|----------------|-------------------|-------------------| | June | emissions | dry deposition | wet deposition | dry deposition | dry deposition | | Domain3 | | | | | | | (nmol m ⁻² s ⁻¹) | 2.736 | 0.749 | 1.079 | 0.654 | 0.064 | Figure 16. Comparison between modeled and observed NH₃ concentration at 100 m height in November and December, 2017. ### Conclusions - ❖ Observed NH₃ concentration shown large seasonal variations, with the maximum occurred in November and early December for the fertilizer application, while the EDGAR NH₃ products did not well capture the seasonal variations of NH₃ emissions. - ❖ Observed NH₃ net flux in different months displayed distinct diurnal variation. Land surface can act as NH₃ sinks before sunrise, and act as sources in the daytime. - ❖ Modeled NH₃ budget of NH₃ emissions, NH₃ dry deposition, NH₃ wet deposition, NH₄ dry deposition, and NH₄ wet deposition are 2.736, 0.749, 1.079, 0.654, and 0.064 nmol m⁻² s⁻¹ in June for our Domain3. - ❖ WRF-CHEM model results in November indicate the potential low NH₃ emissions in EDGAR, which does not fully considered the application of fertilizer. ## Next steps - Simulate the NH₃ flux for the whole year. - Combine the footprint (WRF-STILT) model with Bayesian inversion method to constrain NH₃ flux at the U.S. Corn Belt