Multiple Sulfur Isotope Study of

Aerosol Samples and its implication

Zhaobing Guo

2016.10.21

Outline

✓ Background

√ 34S Sulfur Isotope & Implication

√ 33S Sulfur Isotope & Implication

Background

Multiple sulfur stable isotopes: ³²S(95.02%), ³³S
 (0.75%), ³⁴S (4.21%), ³⁶S (0.02%)

- ³⁴S is widely used due to high abundance in nature Atmospheric particle/SO₂/precipitation/sea water
- $\delta^{34}S$ retains its special signal, used for: regional source appointments evaluating SO_2 oxidation pathways

Background

- ³³S and ³⁶S are seldom adopted for low abundance and restriction in monitoring instruments; mainly used in geology field;
- Δ^{33} S and Δ^{36} S (abnormal sulfur isotopes) are tracers for atmospheric evolution and chemical reaction processes.

Compositional Notation_Background

$$(^{32}S, ^{33}S, ^{34}S & ^{36}S)$$

✓ Express compositions as ratios of isotopic ratios using

```
\mathbf{\delta}^{34}\mathbf{S} = [(^{34}\text{S}/^{32}\text{S})_{\text{sample}}/(^{34}\text{S}/^{32}\text{S})_{\text{ref}} - 1]*1000
\mathbf{\delta}^{33}\mathbf{S} = [(^{33}\text{S}/^{32}\text{S})_{\text{sample}}/(^{33}\text{S}/^{32}\text{S})_{\text{ref}} - 1]*1000
Standard: Canyon Diablo iron meteorite (CDT)
```

 Δ^{33} S is measured-predicted 33 S/ 32 S in a sample Δ^{36} S is measured-predicted 36 S/ 32 S in a sample Δ^{33} S = δ^{33} S - $1000 \times [(1 + \delta^{34}$ S/ $1000)^{0.515} - 1]$ Δ^{36} S = δ^{36} S - $1000 \times [(1 + \delta^{34}$ S/ $1000)^{1.90} - 1]$

 $|\Delta^{33}S| \sim 0$, Mass-dependent; $|\Delta^{33}S| \geq 0.1\%$, Mass-independent

published data compilation from studies by Hoering, Rumble, Ono, Hu, Papineau, Mojzsis, Whitehouse, Baublys, Ohmoto, Farquhar, Johnston

Measured Method _Background

- ✓ Sulfate is converted to Barite, then reduced to silver sulfide (Ag₂S) by wet chemistry
- ✓ SF₆ is produced by the reaction of silver sulfide (Ag₂S) with F₂ gas
- ✓SF₆ goes through cryogenic & gas chromatographic purification line

- ✓SF₆ is measured by dual-inlet Thermo Finnigan MAT253 at UMD
- \checkmark The precision for δ³⁴S & Δ³³S are 0.1 ‰ and 0.008‰

Observation δ^{34} **S Sulfur Isotope & Implication**

Ternary mixing model: a dominant component & two subordinate components (high and low in $\delta^{34}S$)

Observation δ^{34} **S Sulfur Isotope & Implication**

Sulfur Isotopic Composition of Aerosol Sulfate

Implication δ^{34} **S Sulfur Isotope & Implication**

Backward trajectories ending on 1 Mar

NOAA HYSPLIT MODEL
Backward trajectories ending at 06 UTC 01 Mar 05
CDC1 Meteorological Data

Observation_ δ³⁴S Sulfur Isotope & Implication

Interpretation _ δ^{34} S Sulfur Isotope & Implication

Observation_ \(\Delta^{33} S \) Sulfur Isotope & Implication

- DOY
- >Δ³³S presents a seasonal variation
- ➤ Mass-dependent in March, obvious mass-independent in summer.

Observation Δ^{33} S, Δ^{36} S

✓ positive Δ^{33} S values and negative Δ^{36} S values

Interpretation Δ^{33} , Δ^{36} SO₂ photochemistry

SO₂ photochemistry is only present candidate for anomalous S isotope effects in the rock record

Farquhar et al. J. Geophys.Res., 106,2011

Interpretation Δ^{33} , Δ^{36} S—SO₂ photochemical reactions

- **✓** Wavelength dependency of sulfur MIF during SO₂ photolysis
- ✓KrF laser (248nm) is a major way

Interpretation_ \(\Delta^{33} \mathbb{S} \)

✓SO₂ photolysis (mainly at 248 nm) occurs only in stratosphere in present atmosphere for high O₃ and O₂

 $\checkmark \Delta^{33} S$ we measured in aerosol sulfate should be related to input of sulfate from the stratosphere

Interpretation_ \(\Delta^{33} \)S_CAPE

- •CAPE (Convective available potential energy) is used to predict atmospheric instability and severe weather
- Positive relationship proves sulfur anomalies in aerosol are related to sulfate from stratosphere

Interpretation_ \(\Delta^{33} \)S

•Extremely High Δ^{33} S on August 13,14 and 15 lead us to further investigate the origin of sulfur isotope anomaly.

Interpretation Δ^{33} Satellite product (12 Aug.)

Deep convective clouds active at Xianghe during the time

