Multiple Sulfur Isotope Study of # **Aerosol Samples and its implication** **Zhaobing Guo** 2016.10.21 # **Outline** ✓ Background √ 34S Sulfur Isotope & Implication √ 33S Sulfur Isotope & Implication # **Background** Multiple sulfur stable isotopes: ³²S(95.02%), ³³S (0.75%), ³⁴S (4.21%), ³⁶S (0.02%) - ³⁴S is widely used due to high abundance in nature Atmospheric particle/SO₂/precipitation/sea water - $\delta^{34}S$ retains its special signal, used for: regional source appointments evaluating SO_2 oxidation pathways # **Background** - ³³S and ³⁶S are seldom adopted for low abundance and restriction in monitoring instruments; mainly used in geology field; - Δ^{33} S and Δ^{36} S (abnormal sulfur isotopes) are tracers for atmospheric evolution and chemical reaction processes. ### Compositional Notation_Background $$(^{32}S, ^{33}S, ^{34}S & ^{36}S)$$ # ✓ Express compositions as ratios of isotopic ratios using ``` \mathbf{\delta}^{34}\mathbf{S} = [(^{34}\text{S}/^{32}\text{S})_{\text{sample}}/(^{34}\text{S}/^{32}\text{S})_{\text{ref}} - 1]*1000 \mathbf{\delta}^{33}\mathbf{S} = [(^{33}\text{S}/^{32}\text{S})_{\text{sample}}/(^{33}\text{S}/^{32}\text{S})_{\text{ref}} - 1]*1000 Standard: Canyon Diablo iron meteorite (CDT) ``` Δ^{33} S is measured-predicted 33 S/ 32 S in a sample Δ^{36} S is measured-predicted 36 S/ 32 S in a sample Δ^{33} S = δ^{33} S - $1000 \times [(1 + \delta^{34}$ S/ $1000)^{0.515} - 1]$ Δ^{36} S = δ^{36} S - $1000 \times [(1 + \delta^{34}$ S/ $1000)^{1.90} - 1]$ $|\Delta^{33}S| \sim 0$, Mass-dependent; $|\Delta^{33}S| \geq 0.1\%$, Mass-independent published data compilation from studies by Hoering, Rumble, Ono, Hu, Papineau, Mojzsis, Whitehouse, Baublys, Ohmoto, Farquhar, Johnston ### Measured Method _Background - ✓ Sulfate is converted to Barite, then reduced to silver sulfide (Ag₂S) by wet chemistry - ✓ SF₆ is produced by the reaction of silver sulfide (Ag₂S) with F₂ gas - ✓SF₆ goes through cryogenic & gas chromatographic purification line - ✓SF₆ is measured by dual-inlet Thermo Finnigan MAT253 at UMD - \checkmark The precision for δ³⁴S & Δ³³S are 0.1 ‰ and 0.008‰ ### **Observation** δ^{34} **S Sulfur Isotope & Implication** Ternary mixing model: a dominant component & two subordinate components (high and low in $\delta^{34}S$) ### **Observation** δ^{34} **S Sulfur Isotope & Implication** #### **Sulfur Isotopic Composition of Aerosol Sulfate** ### **Implication** δ^{34} **S Sulfur Isotope & Implication** #### **Backward trajectories ending on 1 Mar** NOAA HYSPLIT MODEL Backward trajectories ending at 06 UTC 01 Mar 05 CDC1 Meteorological Data # Observation_ δ³⁴S Sulfur Isotope & Implication ### Interpretation _ δ^{34} S Sulfur Isotope & Implication ### Observation_ \(\Delta^{33} S \) Sulfur Isotope & Implication - DOY - >Δ³³S presents a seasonal variation - ➤ Mass-dependent in March, obvious mass-independent in summer. # Observation Δ^{33} S, Δ^{36} S ✓ positive Δ^{33} S values and negative Δ^{36} S values ### Interpretation Δ^{33} , Δ^{36} SO₂ photochemistry SO₂ photochemistry is only present candidate for anomalous S isotope effects in the rock record Farquhar et al. J. Geophys.Res., 106,2011 ### Interpretation Δ^{33} , Δ^{36} S—SO₂ photochemical reactions - **✓** Wavelength dependency of sulfur MIF during SO₂ photolysis - ✓KrF laser (248nm) is a major way # Interpretation_ \(\Delta^{33} \mathbb{S} \) ✓SO₂ photolysis (mainly at 248 nm) occurs only in stratosphere in present atmosphere for high O₃ and O₂ $\checkmark \Delta^{33} S$ we measured in aerosol sulfate should be related to input of sulfate from the stratosphere # Interpretation_ \(\Delta^{33} \)S_CAPE - •CAPE (Convective available potential energy) is used to predict atmospheric instability and severe weather - Positive relationship proves sulfur anomalies in aerosol are related to sulfate from stratosphere ### Interpretation_ \(\Delta^{33} \)S •Extremely High Δ^{33} S on August 13,14 and 15 lead us to further investigate the origin of sulfur isotope anomaly. # Interpretation Δ^{33} Satellite product (12 Aug.) Deep convective clouds active at Xianghe during the time