Drivers of temporal variations of CO₂ flux at a submerged macrophyte habitat in Lake Taihu Gao Yunqiu YNCenter Weekly Video Conference 2016.04.01 #### **Outline** - Background - Site description - Data post-processing method - Results - Conclusions - On-going work ### **Background** - ◆ Lakes play crucial roles in global carbon cycle (Tranvik et al, 2009) and their social importance cannot be ignored as they have impacts on local climate (Cole et al, 1994). - ◆ Freshwater lakes usually act as sources of atmospheric carbon with CO₂ supersaturated (Cole et al, 1994), except for some high algal activities (Balmer and Downing, 2011). - ◆ Lake Taihu located in Yangtze River Delta, the 3rd largest freshwater lake in China with average depth of 1.9m. Is this eutrophic lake a source or sink of atmospheric CO₂ (Lee et al, 2014).? #### Biological and physical pumps of carbon dioxide # Site description - Dominated by submerged macrophytes - Started on 15 December 2011 - Water depth: 1.7 m - EC height: 8.5 m above water surface. - EC gas analyzer: Campbell EC150 # Bifenggang site避风港站 (BFG, 31°10′28"N, 120°24′01"E) ## Data post-processing method Time series of post-processing CO₂ flux #### Results Fig.1 Monthly mean time series of CO₂ flux **Fig.2** Diurnal pattern of CO_2 flux in different seasons from 2012 to 2015. The error bars indicate the 25th and 75th percentiles. Fig.3 Diurnal pattern of Fc, K, Hc and LE from 2012 to 2015 **Tab.1** Yearly carbon emission and yearly mean *K*, *Hc* and *LE* | | 2012 | 2013 | 2014 | 2015 | |--|---------|---------|---------|---------| | C (t m ⁻¹ y ⁻¹) | -0.4615 | -0.3989 | -0.4051 | -0.2180 | | K (W m ⁻²) | 145.5 | 158.4 | 143.7 | 142.8 | | <i>Hc</i> (W m ⁻²) | 7.0 | 6.0 | 6.7 | 6.3 | | <i>LE</i> (W m ⁻²) | 64.6 | 61.5 | 54.7 | 63.5 | (1) Lake Pallasjärv, northern Finland, mean depth: 9 m, two streams have a peatland-dominated drainage Area, time period: 2013. (Lohila et al,2015) (3) Five eutrophic, shallow and polymictic lakes, Danish (Keppesen et al, 2015). CAM: the Crassulacean acid metabolism - ◆ The most interesting feature regarding the CO₂ flux (Fc) data is the negative flux in darkness. These nocturnal uptake events usually persist through the whole. They tend to occur in the night following a daylight period of strong solar radiation (Lee et al, 2014). - ◆ In this way, I find all the continue sunny and cloudless days from 2012 to 2015 by taking incoming shortwave radiation (K) as judgment criterion. Taking a 5 days or longer time period as a case, there are 3, 5,6 and 4 cases in 2012 to 2015 respectively. #### cases #### cases #### cases cases **Fig.5** Time series at BFG. (a) Incoming shortwave radiation, (b) CO_2 mixing ratio at BFG (blue line) and at MLW (green line), (c) CO_2 flux (blue solid line) and \triangle Tw means water temperature difference between 100cm and 20 cm, (d) water temperature at 20cm (blue), 50cm (green), 100cm (red), 150cm (blue) and 200cm (purple). Fig.6 Time series at BFG. (a) CO_2 flux, (b) Water temperature, (c) TKE. **K-ε model** A model for vertical turbulent diffusion and stratification in a shallow lake with submersed macrophytes is formulated on the basis of a one-dimensional equation for production, transport, and dissipation of turbulent kinetic energy, coupled with a vertical heat transfer equation. **Fig.7** CO_2 flux in different friction velocity (u_*) classes. Fig.8 Diurnal pattern of CO₂ flux Yearly averaged nighttime flux ranges from -1 to 0 μ mol m⁻² s⁻¹ and is 3 to 4 times the midday flux (Fig. 3). In the 2012 case, nighttime flux is about -10 μ mol m⁻² s⁻¹ and is 5 times the midday flux, similar phenomenon displays in the 2013 case. #### **Conclusions** ◆ This submerged macrophyte habitat in Lake Taihu is a atmospheric CO₂ sink. Diurnal pattern of Fc is quite different with other researches. Drivers of CO₂ flux at this area can be the CAM of aquatic plants and dynamic forces like TKE and friction velocity. # **On-going work** Reading more papers about lake CO₂ flux and do literature summary. ◆ As only 2 cases were analyzed, I will continue analyzing other data and determine the drivers of CO₂ flux. # Thank you!