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[1] Solar radiation at the Earth’s surface is an important driver of meteorological and
ecological processes. The objective of this study is to evaluate the accuracy of the reanalysis
solar radiation produced by NARR (North American Regional Reanalysis) and MERRA
(Modern-Era Retrospective Analysis for Research and Applications) against the FLUXNET
measurements in North America. We found that both assimilation systems systematically
overestimated the surface solar radiation flux on the monthly and annual scale, with an
average bias error of +37.2 Wm�2 for NARR and of +20.2 Wm�2 for MERRA. The bias
errors were larger under cloudy skies than under clear skies. A postreanalysis algorithm
consisting of empirical relationships between model bias, a clearness index, and site
elevation was proposed to correct the model errors. Results show that the algorithm can
remove the systematic bias errors for both FLUXNET calibration sites (sites used to
establish the algorithm) and independent validation sites. After correction, the average
annual mean bias errors were reduced to +1.3 Wm�2 for NARR and +2.7 Wm�2 for
MERRA. Applying the correction algorithm to the global domain of MERRA brought the
global mean surface incoming shortwave radiation down by 17.3 W m�2 to 175.5 W m�2.
Under the constraint of the energy balance, other radiation and energy balance terms at the
Earth’s surface, estimated from independent global data products, also support the need for a
downward adjustment of the MERRA surface solar radiation.
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1. Introduction

[2] Solar energy at the earth’s surface (S) is an important
driver of various interactions between the land and the
atmosphere. To improve our understanding of how meteoro-
logical processes distribute energy in the climate system, an
accurate assessment of this variable is required. Because this
variable is not among the measurements made at standard sur-
face weather stations, models of various complexities are used
to estimate its spatiotemporal distributions. Atmospheric
reanalysis is one such class of models. In reanalysis model
systems, solar radiation at the surface is calculated with radia-
tive transfer models (RTMs). The reanalysis modeled products
are superior to discrete surface observations because of large
and continuous spatial and temporal coverages. These features
are especially attractive for people interested in climate and
ecological patterns on the regional and global scales.

[3] Implementation of RTMs can be divided into two cate-
gories: stand-alone mode and application embedded in global
climate models (GCMs) or reanalysis systems. The stand-
alone models provide accurate single column calculations,
while the applications in GCMs and reanalyses are suited for
regional and global scales with minimal loss of accuracy.
Previous efforts have taken advantages of both types of the
RTMs to produce the radiation fluxes at the top of atmosphere
(TOA), within the atmosphere and at the surface [Rossow and
Zhang, 1995; Zhang et al., 1995; Kiehl and Trenberth, 1997;
Zhang et al., 2004; Hatzianastassiou et al., 2005]. Of interest
here is the discrepancy in the estimate of the global mean S.
According to the ISCCP-FD (fluxes using the International
Satellite Cloud Climatology Project-D input data), the global
mean S value is 188.5 Wm�2 for the period of 2000 to 2004
[Trenberth et al., 2009]. Using the same cloud climatology
in the ISCCP-D series but a different RTM and ancillary data
sets [Zhang et al., 2004], Hatzianastassiou et al. [2005]
estimated a mean value of 171.6 Wm�2. These two estimates
differ by 17 Wm�2 or 9.8%, indicating uncertainties in the
various RTMs or input data sets used.
[4] Validation of reanalysis model products against surface

observations is an active area of research. This is because
reanalysis represents only the best “guess” of various atmo-
spheric and hydrological variables through a combination
of model predictions and a variety of observations, the latter
of which serve to constrain the model calculations. One
source of error is the spatial and temporal mismatch between
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the model analytical framework and the observational data
sets. In the case of radiative fluxes, neither cloud observations
nor surface radiation measurements are directly assimilated in
the model system. (MERRA assimilates clouds indirectly by
adjusting moisture over the oceans.) Furthermore, as noted
above, the RTMs imbedded in the modeling system have their
own inherent uncertainties.
[5] Several investigators have compared the surface radia-

tion variables produced by NARR and MERRA against field
observations. Using the data obtained at a FLUXNET site in
Oklahoma, USA, Kennedy et al. [2011] concluded that both
MERRA and NARR have positive biases (NARR: 47
Wm�2; MERRA: 19 Wm�2) for S and negative biases for
the surface downward longwave radiation. They attributed
the significant positive bias in NARR to a combination of
too low cloud amounts in the model domain and too weak
light extinction by aerosols and water vapor. Markovic
et al. [2009] found similar positive biases (40 Wm�2) in the
annual mean S for NARR at six sites in six states from west
to east US and attributed them to a negative bias in cloud
fraction. Walsh et al. [2009] evaluated surface radiative
fluxes and cloud fraction from NARR and three other
reanalyses against ground measurements at Barrow, Alaska
in the Arctic, and found positive biases of +4 to +43 W m�2

in monthly S and the associated negative biases of cloud frac-
tion. Over the same region, Zib et al. [2012] found an annual
mean high bias of 3.9 Wm�2 for MERRA at two BSRN
(Baseline Surface Radiation Network) sites. They also related
the bias errors to biases in the modeled cloud fraction al-
though the radiation biases still exist for some time periods
despite that the observed cloud fraction is correctly
reproduced by the model. In a recent evaluation study involv-
ing six reanalysis products at nine field sites on the Tibetan
Plateau, Wang and Zeng [2012] reported an overestimation
of up to 40Wm�2 for S inMERRA. According to their study,
the bias errors appear to be related to latitude.
[6] The few investigations conducted over large spatial

scales have confirmed the tendency for reanalysis models to
overestimate the surface solar radiation. Utilizing hourly
observations at 33 FLUXNET sites in the US and Canada,
Decker et al. [2012] evaluated a number of surface microme-
teorological and flux variables produced by the NCEP/
NCAR, CFSR, ERA-40, ERA-Interim, GLDAS, and
MERRA reanalysis systems, concluding that all of them
overestimate S by varying amounts of 10 to 50 Wm�2 with
ERA-Interim having the best accuracy. In another large-scale
evaluation study, Wild et al. [1998] compared surface solar
energy of the reanalysis product ECMWF (European
Center for Medium Range Weather Forecasts) against the
monthly mean radiation observations at 720 GEBA (Global
Energy Balance Archive) sites distributed worldwide. In
terms of annual means, an underestimation at low latitudes
in the Northern Hemisphere and an overestimation in the rest
of the world were found in the study. But overall, the
reanalysis bias errors are substantially smaller than in GCM
estimates [Wild et al., 1995].
[7] The published studies show that the annual mean bias

errors of reanalyzed S are in the range of +5 to +60 W m�2.
These positive bias errors have undesirable consequences
for atmospheric and ecological applications. First, these bias
errors are 5–30% of the observed net all-wave surface
radiation balance at midlatitude forests [Rotenberg and

Yakir, 2010; Lee et al., 2011]. Use of the reanalyzed surface
solar radiation to drive land surface model calculations will
result in extra energy going to the atmosphere via sensible
and latent heat fluxes assuming other radiation terms remain
unchanged. An excess of net radiation at the surface, for
example, could cause excessive surface evaporation espe-
cially under moist climate [Betts et al., 1996]. Under the
assumption that surface evapotransporation is balanced by
precipitation, this would lead to excessive precipitation in
climate models. In reanalysis systems, excessive surface
evapotransporation calculated by the model may not be
balanced by precipitation assimilated from observations, thus
forcing the model to drift to a dry soil state [Viterbo and
Courtier, 1995]. Second, the reanalysis S is used to predict
surface ozone formation [Mickley et al., 2004; Leung and
Gustafson, 2005; Nolte et al., 2008; Weaver et al., 2009;
Hickman et al., 2010]. The study by Nolte et al. [2008]
suggests that a high bias error of 20 W m�2 in S can cause
an increase of surface ozone concentration by about 3–5 ppb
in eastern Texas and along much of the east coast of the
US. Third, because solar radiation is the primary driver of
plant photosynthesis, bias errors in S are problematic for
ecological models. Finally, the reanalysis radiation data
are used to assess the global energy budget of the climate
system [Wild, 2009; Bosilovich et al., 2011; Stephens
et al., 2012a; Stephens et al., 2012b]. The reported bias
errors in S are comparable in magnitude to the global mean
surface sensible heat flux [Trenberth et al., 2009], empha-
sizing the need for a quantitative correction algorithm.
[8] The first objective of this study is to evaluate the two

reanalysis S products, NARR and MERRA, against the
FLUXNET observations in North America. Our strategy is
to perform the evaluation at a large number of FLUXNET
sites across different climate regimes, over a wide range of
elevations, and at multiple time scales of months to multiple
years. Simultaneous evaluation of two reanalysis products
may help us to uncover model errors related to the data
sources and the approach taken by the models. FLUXNET
is a global network of eddy flux towers which maintain
continuous measurements of surface meteorological vari-
ables and land-atmosphere fluxes [Baldocchi et al., 2001].
Because our analysis is conducted with monthly averages,
it is essential that the sites have long records to produce large
enough numbers of gap-free months for rigorous compari-
son. Many FLUXNET sites satisfy this criterion (Table 1).
In addition, long time series allow us to examine the capabil-
ity of the reanalyses to capture the interannual variations in S.
[9] Our second objective is to develop an algorithm for

reducing the systematic errors. A computationally efficient
postreanalysis correction algorithm is desired by the end
users engaged in the applications discussed above. The
routine was applied to the MERRA data to obtain a sense
of its bias in the global mean S estimate. Although the algo-
rithm is restricted to MERRA and NARR, the insights gained
may be useful for developing correction algorithms for other
reanalysis products.
[10] As in Decker et al. [2012] and Wild et al. [1998], we

validated the reanalyzed S products against a large number
of observational sites. We expanded the work of Wild et al.
[1998] by focusing not only on annual mean S but also on
its seasonal and interannual variations. Instead of using
hourly data as in Decker et al. [2012], we conducted the
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comparison using monthly means which have smaller
random errors than the hourly data, allowing better isolation
of systematic errors.

2. Materials and Methods

2.1. Sites and Data

2.1.1. Surface Observations
[11] The Ameriflux (level 2) and FLUXNET-CANADA

(http://public.ornl.gov/ameriflux/index.html; http://fluxnet.
ccrp.ec.gc.ca/e_about.htm) are two regional networks of

FLUXNET, consisting of eddy-covariance sites in North
America, Central America, and South America. In this study,
we selected 24 sites, spanning a large geographic range of the
US and Canada (Figure 1). Of these, 14 sites have long
measurement records and were used as calibration sites (sites
used to develop the correction algorithm). The other 10 sites
were used as validation sites (sites used to independently
validate the corrected S). These sites all measured the four
components of the surface radiation balance and had high
(>90%) data coverage. All the sites in this study used a
pyranometer to measure S, but the sensor type varies. The

Table 1. Annual Mean Surface Incoming Solar Radiation Fluxes and Ancillary Information on the Calibration and Validation Sites

Site Code Site Name
State/
Prov Lat Long

Elev
(m)

Years
Included

Annual Means Annual Mean Bias

Reference
Observed
(Wm�2)

NARR
(Wm�2)

MERRA
(Wm�2)

Calibration
CA-Obs Old Black Spruce SK 53.99 �105.12 629 10 134.6 29.2 18.6 Jarvis et al. [1997]
CA-Ojp Old Jack Pine SK 53.92 �104.69 579 10 133.3 30.8 19.9 Baldocchi et al. [1997]
CA-Oas Old Aspen SK 53.63 �106.20 601 10 136.4 29.6 19.5 Blanken et al. [1997]
CA-Ca1 BC Douglas-fir 1949 BC 49.87 �125.33 320 12 127.2 34.6 21.0 Humphreys et al. [2003]
US-UMB UMBS MI 45.56 �84.71 234 8 150.8 39.3 22.5 Schmid et al. [2003]
CA-Cbo Borden ON 44.20 �79.93 217 14 149.2 39.8 26.0 Lee et al. [1999]
US-NR1 Niwot Ridge CO 40.03 �105.55 3050 5 188.0 59.8 37.0 Monson et al. [2002]
US-MMS Morgan Monroe State Forest IN 39.32 �86.41 275 9 167.6 41.0 22.7 Schmid et al. [2000]
US-Ton Tonzi Ranch CA 38.43 �120.97 177 7 218.8 23.6 6.0 Ma et al. [2007]
US-Var Vaira Ranch CA 38.41 �120.95 129 8 213.1 26.9 9.0 Ma et al. [2007]
US-WBW Walker Branch TN 35.96 �84.29 343 10 174.3 35.6 22.8 Wilson and Meyers [2001]
US-Aud Audubon Research Ranch AZ 31.59 �110.51 1469 6 237.2 35.0 11.1 Krishnan et al. [2012]
US-SP2 Mize FL 29.76 �82.24 43 7 184.2 41.3 18.9 Gholz and Clark [2002]
US-SP3 Donaldson FL 29.75 �82.16 36 7 182.1 43.1 21.1 Gholz and Clark [2002]

Validation
CA-Qfo Quebec Mature Boreal Forest QC 49.69 �74.34 390 1 127.9 30.9 24.7 Bergeron et al. [2007]
CA-Ca3 BC Douglas-fir 1988 BC 49.53 �124.90 120 1 133.5 35.5 17.5 Humphreys et al. [2006]
US-Ho1 Howland Forest Main ME 45.20 �68.74 60 2 150.7 37.7 28.5 Hollinger et al. [1999]
US-Bkg Brookings SD 44.35 �96.84 510 4 175.3 35.4 12.4 Gilmanov et al. [2005]
US-Bo1 Bondville IL 40.01 �88.29 219 7 168.7 39.6 23.7 Hollinger et al. [2005]
US-Slt Silas Little Experimental Forest NJ 39.91 �74.60 30 4 159.5 48.5 27.6 Clark et al. [2010]
US-MOz Missouri Ozark MO 38.74 �92.20 219 4 180.0 39.4 16.4 Gu et al. [2006]
US-Dk2 Duke Forest Hardwoods NC 35.97 �79.10 168 5 183.4 35.7 15.3 Oren et al. [2006]
US-NC2 North Carolina Loblolly Pine NC 35.80 �76.67 12 4 170.3 40.3 27.2 Noormets et al. [2010]
US-Fmf Flagstaff Managed Forest AZ 35.14 �111.73 2160 3 230.2 36.1 13.4 Dore et al. [2008]

Figure 1. Map of the selected Ameriflux and FLUXNET-CANADA sites. Circles denote the calibration
sites, and triangles denote the validation sites.
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uncertainty of measured S in Ameriflux is ±3.55 W m�2

according to a cross-site comparison with a roving
Ameriflux standard pyranometer [Schmidt et al., 2012].
[12] BSRN [Ohmura et al., 1998], established in 1992, is a

global network of continuous measurements of radiative
fluxes at the Earth’s surface. It has 56 stations, covering a
latitudinal range from 80°N to 90°S. BSRN monitors the
global solar irradiance primarily by a combination of diffuse
sky irradiance measured by a shaded pyranometer and direct
solar irradiance measured by an absolute cavity radiometer,
with a target accuracy of 5 W m�2 [Ohmura et al., 1998].
In this study, we selected 42 BSRN sites for further valida-
tion of the correction algorithm outside of North America
(supporting information Figure S1 and Table S1); at these
sites, measurements are complete for at least one year. In ad-
dition to the BSRN sites, we also include on the validation
list the data from the published literature in which the ob-
served annual mean S is reported.
2.1.2. NARR
[13] The North American Regional Reanalysis (NARR),

carried out by the National Center for Environmental
Prediction (NCEP), is a long-term, near real-time, high-
resolution, high-frequency, atmospheric and land surface
reanalysis product [Mesinger et al., 2006]. This regional
reanalysis provides a much improved data set of land hydrol-
ogy and land-atmosphere interactions compared to the earlier
global reanalysis data set NCEP-NCAR. NARR covers the pe-
riod from 1979 up to the present, with the data archived at 3
hourly, daily, and monthly time scales. The grid resolution is
approximately 32 km. Documented in the NARR outputs are
meteorological, hydrological, and ecological variables. Here
we used the surface incoming shortwave radiation flux data.
[14] The radiative fluxes at the surface are computed

through the radiation scheme embedded in the NCEP Eta
model, which has a shortwave [Lacis and Hansen, 1974]
and a longwave package [Fels and Schwarzkopf, 1975].
The shortwave absorption scheme considers the amount
and type of cloud, the humidity, the solar elevation angle,
and the vertical distribution of ozone within the stratosphere.
The cloud information is obtained from the cloud microphysics
in the Eta model [Ferrier et al., 2002].
2.1.3. MERRA
[15] MERRA [Rienecker et al., 2011], maintained by

NASA Global Modeling and Assimilation Office, is the sec-
ond generation reanalysis data set, which uses the Goddard
Earth Observing System Data Assimilation System-Version
5 (GEOS-5). GEOS-5 includes GEOS-5 atmospheric circula-
tion model and the grid point statistical interpolation.
MERRA implements a procedure called incremental analysis
updates [Bloom et al., 1996] to slowly converge modeled
calculations toward the observations. A key feature of this
global reanalysis is that it takes advantage of a variety of
recent satellite observations to improve the estimates of
earth’s energy and water cycles. Same with NARR,
MERRA spans the satellite era, from 1979 to the present.
Most of the MERRA outputs are archived hourly at its native
spatial grid resolution of 2/3° × 1/2°.
[16] The radiative transfer model developed at the Goddard

Climate and Radiation Branch at NASA is utilized in
MERRA to generate the radiative fluxes at the top of the
atmosphere (TOA) and at the surface. The shortwave radia-
tion scheme, documented in Chou and Suarez [1999],

resolves the absorption by water vapor, ozone, oxygen,
carbon dioxide, and aerosols. The longwave radiation scheme,
documented inChou et al. [2001], calculates the absorption by
water vapor, trace gases, clouds, and aerosols. A prognostic
cloud scheme embedded in MERRA assumes that clouds are
maximum-randomly overlapped.

2.2. Method

2.2.1. Spatial Interpolation
[17] In order to account for the spatial mismatch between

modeled grids and surface observations, the reanalysis data
were horizontally interpolated, using a bilinear interpolation
technique, to the measurement site from the center of the four
surrounding grid cells with a weighting factor that is inversely
proportional to the distance. The same technique was used by
Wild et al. [1998] in their validation of the ECMWF
reanalysis. The interpolation was done at the 3 hourly intervals
for NARR and at hourly intervals for MERRA, and daily
mean values were computed with the interpolated data. The
interpolation should eliminate errors arising from latitudinal
mismatch especially for measurement sites located near the
edge of a grid cell. The slight mismatch between the interpo-
lated model grid elevation and that of the measurement site
(500 m at most) has negligible consequences and is ignored.
2.2.2. Monthly Average
[18] The space-time sampling mismatch between model

products and surface measurements can cause large uncer-
tainties in validation studies [Rossow and Zhang, 1995;
Zhang et al., 2004]. This is because surface measurements
are for single points in space, whereas modeled fluxes are
for the area of a grid cell. At hourly time steps, large random
errors are unavoidable due to variations of cloud within the
grid cell. Using longtime temporal averages to compare the
cell mean and the point measurement should reduce the er-
rors caused by the problem [Zhang et al., 2004]. For this rea-
son, we conducted the comparison using monthly averages.
[19] The original observational data are half-hourly. We

excluded outliers (daytime negative values) in the original
data. In order to avoid introducing new uncertainties, we
did not perform any gap filling for missing data or daytime
outliers. Instead, we excluded the day if one or more half-
hourly observation was missing during the daytime and
excluded the whole month if five or more days were missing
in that month. (Missing nighttime values were substituted by
zero.) To ensure proper comparison, we also excluded the
same days to calculate the reanalyzed monthly means.
2.2.3. Dependence of Bias Error on Clearness Index
[20] We utilized the concept of clearness index (kt) to

develop an algorithm for correcting the reanalysis bias errors.
This index is defined as the ratio of global solar radiation
received at the surface to the extraterrestrial radiation at the
TOA (Se) [Gu et al., 1999],

kt ¼ S

Se
; (1)

where Se is given by

Se ¼ Ssc 1þ 0:033 cos 360td=365ð Þ½ � sinβ; (2)

[21] In equation (2), SSC is the solar constant, td is the day
of the year, and β denotes the solar elevation angle. The
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hourly values of Se given by equation (2) were converted into
monthly means using the same method as for the reanalyzed
S. The clearness index was used as an independent variable to
relate with the model errors in this study.
[22] A bias ratio (bm) was used to measure the relative bias

error, as:

bm ¼ Sm � S

Sm
; (3)

where Sm denotes the modeled solar radiation at the surface,
and S denotes the observed solar radiation. Using the bias
ratio rather than the actual bias nondimensionizes the error
and helps to eliminate the possible latitudinal dependence
of the bias [Wild et al., 1998].
[23] The reanalysis systems have much better performance

under clear-sky conditions than under cloudy sky conditions.
Wild et al. [1998] have demonstrated the accurate perfor-
mance of the radiation scheme in ECMWF under clear-sky
conditions. Similarly, MERRA is also able to calculate the
clear-sky surface global radiation flux reasonably well
[Kennedy et al., 2011]. Under cloudy skies, both NARR
and MERRA underestimate the cloud fraction [Kennedy
et al., 2011; Zib et al., 2012], contributing to overestimation
of S. Here we used the following simple linear equation to in-
clude the dependence of bias on sky conditions

bm ¼ a �kt þ b (4)

where a and b are empirical coefficients.
2.2.4. Dependence of Bias Error on Elevation
[24] Site elevation can also introduce model bias errors

[Frauenfeld et al., 2005; Zhao et al., 2007; Wang and
Zeng, 2012], for two reasons. First, if elevation at the model
grid does not match that at the observational point, the
sunlight optical path is not correctly resolved by the model,
leading to underestimation or overestimation of the sunlight
extinction. However, among all the observation sites chosen
for this study, the elevation mismatch is at most 0.5 km, and
according to the observed elevation gradient of S in the
eastern US [Richardson et al., 2004], the resulting bias in S
should be no greater than 2%. Second, our analysis suggests
that either the lack of fully resolved orographic clouds or the
bias in higher cloud liquid water path (LWP) results in
increased bias errors at higher elevation sites. Empirically, this
second elevation effect is captured here by modifying the
coefficient b in equation (4) to be a function of the site eleva-
tion ze (< 5 km)

b ¼ c0ze
2 þ c1ze þ c2; (5)

where c0, c1, and c2 are empirical coefficients.
[25] To determine the regression coefficients in equations

(4) and (5), we first applied the geometric mean regression
to equation (4), using monthly data from all the calibration
sites, to obtain the slope coefficient a separately for NARR
and MERRA. Next we applied equation (4) to the monthly
data at individual sites with the fixed slope coefficient to
determine the intercept coefficient b. Finally, the coefficients
c0, c1, and c2 in equation (5) were found by regression of the
site b value against its elevation. To avoid abnormal behavior
of the quadratic curve beyond the valid data range, we set a
threshold of 5 km in site elevation, beyond which b
remains constant.

2.2.5. Postreanalysis Correction
[26] The above set of equations cannot be used directly to

correct the model bias errors because the clearness index is
an unknown variable without actual measurement of the
surface solar radiation. However, a solution for the corrected
monthly mean S can be derived from equations (3) and (4), as

S ¼ 1� bð ÞSmSe
aSm þ Se

; (6)

where a is fixed for each of the two reanalysis products and b
depends on the surface elevation of the model grid according
to equation (5). To avoid negative bias ratio, we set the
thresholds for kt as kt> 0.75 for NARR and kt> 0.70 for
MERRA, or,

1� bð ÞSm
aSm þ Se

> 0:75 for NARR; (7)

1� bð ÞSm
aSm þ Se

> 0:70 for MERRA: (8)

No correction was conducted above these thresholds.

3. Results and Discussion

3.1. Relations of Bias Errors to Clearness Index
and Elevation

[27] Sky condition is the primary factor that drives the
variations of model bias error for both NARR and MERRA.
Applying the regression analysis to 1253 monthly observa-
tions pooled together from the 14 calibration sites, we
obtained the following empirical relationships:

bm ¼ �0:89 �kt þ 0:65 for NARR; (9)

bm ¼ �0:82 �kt þ 0:55for MERRA: (10)

[28] The slopes of these regression equations are large,
reflecting large sensitivity to the clearness index. The sensi-
tivity to the clearness index is slightly larger for NARR than
for MERRA. The intercepts of the regression equations
represent the model bias ratios under the theoretical limit of
kt= 0. In this limit, NARR has larger bias errors than
MERRA. These intercepts also give the upper limits of the
model bias ratios. According to the regression R2 values,
the clearness index explains 62% of the variations of the bias
errors in NARR and 36% in MERRA. MERRA has a smaller
R2 value than NARR, in part due to the few outliers
(Figure 2b) which will be discussed in section 3.3; excluding
these outliers, the R2 would improve to 0.52.
[29] The negative relationships shown in Figure 2 confirm

that the model bias errors are larger under cloudy skies than
under clear skies. This indicates that the NARR and
MERRA model systems have poor capability of describing
cloudiness. When kt ≥ 0.7, both reanalysis systems have bias
ratios near zero. When kt ≤ 0.2, NARR and MERRA have
bias ratios of around 0.5 and 0.4, respectively. Like other
reanalysis systems, NARR and MERRA parameterize cloud
with cloud microphysics packages instead of directly assim-
ilating cloud observations. Our results suggest that these
parameterizations have a tendency to underestimate cloud
amount. Similarly, Walsh et al. [2009], Kennedy et al.
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[2011], and Zib et al. [2012] found that a negative bias in the
modeled cloud fraction is associated with a positive bias in
the reanalyzed surface solar radiation.Wu et al. [2012] found
significant underestimation of cloud fraction (20–40%) in
three reanalyses over the Southern Great Plains, USA and
this underestimation is related to underestimation of other
cloud properties such as cloud albedo and surface relative
shortwave cloud forcing.
[30] Underestimation of the cloud liquid water path (LWP)

is another possible source of error. The amount of cloud
liquid water influences the reflection and absorption of short-
wave radiation. Zib et al. [2012] found that the radiation
biases still exist for some time periods despite that the
observed cloud fraction is correctly reproduced by the model.
Cullather and Bosilovich [2012] reported that MERRA cloud
LWP is about 45% of that of microwave retrievals in the
Arctic and this bias is consistent with biases in the surface
net radiation. Zhao and Wang [2010] evaluated ECMWF
cloud LWP against long-term observations at Barrow,
Alaska in the Arctic during 1999–2007 and found that the
model on average underestimates LWP by 30 g m�2.
Outside of the Arctic, Duynkerke and Teixeira [2001] found
that the ECMWF reanalysis ERA-15 strongly underestimates
marine stratocumulus cloud cover and LWP off the coast of
California. Similar results were found in ERA-40 by
Stevens et al. [2007].
[31] Figure 3 illustrates that the model bias errors tend to be

larger at higher elevation sites. The regression equations are

b ¼ �0:010ze
2 þ 0:070ze þ 0:63 for NARR; (11)

b ¼ �0:0087ze
2 þ 0:065ze þ 0:51 for MERRA; (12)

In this figure, we have added the available high elevation
FLUXNET validation and BSRN sites (elevation greater
than 1 km). Even though the regressions were established
with only two high elevation FLUXNET calibration sites,
they captured the overall elevation dependence reasonably
well. The choice of the quadratic fitting function is somewhat
arbitrary. Use of a linear fit function would yield similar
results (supporting information Table S2).
[32] The elevation-dependent intercept brings much im-

provement to the algorithm for high elevation sites, regardless
of the form of the fitting function for the intercept parameter.
For example, at the Niwot Ridge site in Colorado (site ID,
US-NR1; elevation, 3050 m), the monthly mean NARR and
MERRA were biased high by 62.6 and 39.4 Wm�2, respec-
tively (Table 2). Using the intercepts in equations (9) and
(10) (without accounting for site-specific elevation) reduced
the bias errors slightly to 61.5 and 35.7 Wm�2, respectively.
Using the elevation-dependent intercept parameters (equations
(11) and (12)), the bias errors were reduced to 6.4 and 6.6
Wm�2 (Table 2). At a site in Tibet (elevation 4620 m,
supporting information Table S1 [Wang and Zeng, 2012]),
the monthly MERRA was biased high by 19.8 Wm�2. Using
the correction with the intercept given in equation (10) and
with the elevation-dependent intercept (equation (12)) reduced
the bias error to 18.5 and 2.0 Wm�2, respectively. With the
elevation-dependent intercept, significant improvements were
also seen at Audubon Research Ranch, Arizona (elevation
1469 m) and Flagstaff Managed Forest, Arizona (elevation
2160m; Table 1) and at five BRNS and the literature sites with
elevation >1000 m (supporting information Table S1).
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Figure 3. Relationship between the intercept coefficient of
equation (4) and the site elevation for the calibration sites.
The slope coefficient of equation (4) is fixed at �0.89 for
NARR and �0.82 for MERRA. Circles: NARR; Triangles:
MERRA; Star: available high elevation sites from BSRN
and validation sites.
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Figure 2. Relationship between monthly mean clearness
index, S / Se, and monthly mean model bias ratio, (Sm � S)
/ Sm, for the calibration sites. (a) NARR, regression equation
y =� 0.89 × x + 0.65 (R2 = 0.62, n= 1253); (b) MERRA,
regression equation y=� 0.82 × x+0.55 (R2 = 0.36, n =1253).
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3.2. Annual and Monthly Bias Errors Before and
After Correction

[33] Equation (6) was used to obtain the corrected monthly
mean S at both the calibration and validation sites. In this
postreanalysis correction, the coefficient a was �0.89 for
NARR and �0.82 for MERRA, and the coefficient b was
given by equations (11) and (12) as a function of site eleva-
tion. The algorithm reduced the annual mean bias errors from
+37.2 Wm�2 (range 23.6 to 59.8 W m�2) and +20.2 Wm�2

(range 6.0 to 37 W m�2), which are much larger than the
measurement uncertainties of 3–5 Wm�2, to +1.3 Wm�2

(range �17.9 to 19.6 W m�2) and +2.7 Wm�2 (range �3.9
to 16.6 W m�2) for NARR and MERRA, respectively
(Table 1). Figure 4a shows the overestimation of surface
solar radiation on the annual scale in NARR and MERRA.
After correction, the annual mean values are evenly distrib-
uted along the 1:1 line as illustrated in Figure 4b.
[34] The monthly statistics for the individual sites are listed

in Table 2. Because the data samples are slightly different,
the monthly mean bias errors are not identical to the annual
bias errors shown in Table 1. Averaging among all the sites,
the correction algorithm reduced the magnitudes of both the
monthly mean bias errors and RMSEs (root mean-square
errors) for the two reanalyses. The values of R2 were slightly
reduced after the correction. For the calibration and the vali-
dation sites, the average R2 were both 0.96 before correction
for NARR and MERRA; after the correction, the average R2

for the calibration sites were reduced to 0.90 for both NARR
and MERRA, and for the validation sites reduced to 0.94 and
0.95, respectively. The larger reduction of the average R2 for

the calibration sites was caused by overcorrection at the two
Florida sites, Mize (US-SP3) and Donaldson (US-SP2) near
Gainesville. The calibration and validation sites behave very
similarly in terms of the magnitudes of monthly mean bias
errors, RMSE and R2 before and after the correction, dem-
onstrating robustness of the correction coefficients in
equations (6), (11), and (12).

3.3. Temporal and Spatial Variations in Bias Errors

[35] The time series plots in Figure 5 illustrate that the
corrected S tracked the observed interannual variabilities
reasonably well at the six selected calibration sites (Old Aspen,
Saskatchewan; Borden, Ontario; Morgan-Monroe State Forest,
Indiana; Walker Branch, Tennessee; Donaldson, Florida;
Vaira Ranch, California). These sites span a large latitudi-
nal/longitudinal band, including both good (Figures 5a,
5b, and 5c) and one of the two worst sites (Donaldson, FL,
Figure 5e) in terms of the algorithm performance. The
monthly mean errors of the good sites were significantly
reduced, with the correlation coefficients of monthly vari-
ability retained (Table 2), and the correlation coefficients
of interannual variability were improved (Table 3). The
two worst sites are Mize and Donaldson, both in Florida in
the subtropical Mediterranean climate regime. Although
the monthly mean error of Donaldson site was reduced,
the correlation coefficients of monthly variability signifi-
cantly decreased from 0.86 and 0.78 to 0.59 and 0.53 for
NARR and MERRA, respectively.
[36] Table 3 lists the correlation coefficient of the observa-

tions with the modeled annual mean S before and after the

Table 2. Statistics of Monthly Mean Surface Incoming Solar Radiation Fluxes in NARR and MERRA Before and After Correction

NARR Corrected NARR MERRA Corrected MERRA

Site Code
ME

(Wm�2)
RMSE
(Wm�2) R2

ME
(Wm�2)

RMSE
(Wm�2) R2

ME
(Wm�2)

RMSE
(Wm�2) R2

ME
(Wm�2)

RMSE
(Wm�2) R2

Calibration
CA-Obs 31.3 35.1 0.98 �11.3 21.6 0.95 20.9 28.3 0.98 1.1 16.4 0.97
CA-Ojp 32.7 37.4 0.98 �7.8 20.5 0.94 22.0 29.1 0.98 3.1 16.8 0.98
CA-Oas 32.9 37.1 0.98 �7.7 19.5 0.95 23.8 30.6 0.98 5.6 17.3 0.98
CA-Ca1 33.6 37.5 0.98 �9.7 19.2 0.95 20.5 29.9 0.98 �0.3 22.2 0.97
US-UMB 35.6 37.6 0.99 6.4 17.8 0.98 20.9 22.2 0.99 7.2 13.5 0.98
CA-Cbo 43.4 46.1 0.98 4.9 19.3 0.95 28.5 31.3 0.98 10.4 17.1 0.97
US-NR1 62.6 70.8 0.96 6.4 22.0 0.96 39.4 46.5 0.97 6.6 23.0 0.96
US-MMS 40.9 42.8 0.98 1.5 15.6 0.95 22.4 25.7 0.97 2.5 16.3 0.95
US-Ton 22.1 23.9 0.99 9.0 22.2 0.97 4.7 10.8 0.99 �1.1 9.9 0.99
US-Var 26.5 28.2 0.99 14.9 24.9 0.98 8.6 12.7 0.99 3.4 10.4 0.99
US-WBW 36.3 38.1 0.97 �11.9 22.9 0.90 23.5 26.9 0.96 1.4 20.3 0.90
US-Aud 34.9 39.8 0.94 7.2 24.8 0.94 11.1 15.2 0.98 �3.2 24.4 0.89
US-SP2 37.8 40.9 0.90 �0.6 32.4 0.63 16.7 25.8 0.84 �2.7 34.5 0.58
US-SP3 43.4 47.3 0.86 6.6 35.5 0.59 22.0 31.5 0.78 3.3 36.6 0.53
Average 36.7 40.2 0.96 0.6 22.7 0.90 20.4 26.2 0.96 2.7 19.9 0.90

Validation
CA-Qfo 30.9 35.9 0.99 �17.9 21.3 0.98 24.7 34.4 0.98 1.5 18.0 0.98
CA-Ca3 35.5 35.4 0.98 1.6 25.6 0.94 17.5 24.5 0.96 2.0 31.5 0.93
US-Ho1 37.7 43.8 0.97 �0.6 21.2 0.94 28.5 32.5 0.98 12.9 19.3 0.99
US-Bkg 35.4 40.7 0.97 8.0 24.2 0.94 12.4 20.1 0.97 �3.0 16.5 0.96
US-Bo1 39.6 43.2 0.95 4.5 19.3 0.93 23.7 30.8 0.93 8.3 23.5 0.91
US-Slt 48.5 53.0 0.98 19.6 31.4 0.96 27.6 30.5 0.98 12.7 18.8 0.97
US-MOz 39.4 41.8 0.98 12.0 23.5 0.96 16.4 19.9 0.98 1.5 14.0 0.96
US-Dk2 35.6 38.0 0.97 �0.6 20.5 0.90 15.4 19.8 0.95 �2.4 21.5 0.88
US-NC2 40.0 43.4 0.98 2.6 19.8 0.91 27.0 31.0 0.96 12.6 24.8 0.89
US-Fmf 38.5 48.9 0.87 0.8 23.0 0.96 14.7 24.0 0.94 �4.2 16.6 0.98
Average 38.1 42.4 0.96 3.0 23.0 0.94 20.8 26.7 0.96 4.2 20.5 0.95
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correction for the 14 calibration sites. (The validation sites
are not listed as they do not have sufficient records for the
computation of the correlation coefficient.) The two
reanalysis systems generally capture the interannual varia-
tions (linear correlation R> 0.6), again with the two Florida
sites being notable exceptions where both systems have
negative correlation coefficients with the observations and
the correction algorithm was unable to rectify this problem.
Averaged across all the calibration sites, the correction algo-
rithm improved the correlation coefficient slightly by 0.06 for
NARR, and 0.08 for MERRA.
[37] Figure 6 illustrates the seasonal pattern of the bias

errors before and after correction for the six selected sites
as in Figure 5. Before correction, the seasonal cycles of bias
were site dependent. Old Aspen, Saskatchewan and Borden,
Ontario had maximum bias errors in June (Figures 6a and
6b). Morgan Monroe State Forest, Indiana, Walker Branch,
Tennessee, and Donaldson, Florida had peak bias errors in
April (Figures 6c–e). Vaira Ranch, California did not have
much seasonal variation (Figure 6f). Generally the cold
season bias was smaller than the warm season errors.
[38] After correction, the bias at the two northern sites (Old

Aspen and Borden) had no obvious seasonal cycle. The

algorithm overcorrected the modeled surface solar radiation
in the summer at Donaldson (Figure 6e), and to a lesser
degree at Morgan Monroe State Forest and Walker Branch
(Figures 6c and 6d). At Donaldson, overcorrection caused
negative monthly mean biases of up to 40 Wm�2 to both
reanalyses. Similar magnitude of overcorrection was also
found for Mize (site ID US-SP2) which is 8 km away from
Donaldson. On the annual time scale, the warm season
negative bias was compensated by the cold season positive
bias, resulting in, fortuitously, much reduced mean bias
(Table 2). At Vaira Ranch, our correction procedure did not
bring improvements to S from May to October (Figure 6f).
During these months, the clearness index was 0.70–0.75,
which are beyond the kt threshold of correction.
[39] The difficulty encountered at Varia Ranch and

Donaldson indicates that factors other than cloudiness and el-
evation also contribute to the model bias errors. Measurement
errors, according to the cross-site comparison of the radiom-
eters at these sites against an Ameriflux roving standard, are
too small to explain the anomalous results [Schmidt et al.,
2012]. A possible explanation is incorrect description of
aerosols at these locations in the models, noting that even
the original NARR and MERRA data fail to capture the
interannual variations of S. Despite this limitation, our
simple correction algorithm has resulted overall reduction
of the RMSEs for the sites we examined (from 41.1 to
22.8 W m�2 for NARR and from 26.4 to 20.1 W m�2 for
MERRA; Table 2).
[40] The outliers in the left corner of Figure 2b came from

the Douglas Fir 1949 site on Vancouver Island, British
Columbia. The original MERRA data had very low and even
slightly negative bias ratios. These points all came from the
winter months with low monthly mean S (< 30 W m�2;
lowest among the sites we examined). Our algorithm caused
slight overcorrection during these months. But the perfor-
mance on the annual scale was not adversely affected,
as evidenced by the large reduction of the mean bias error
from 21.0 to �1.8 W m�2 (Table 1). This wintertime
overcorrection was also found in Douglas Fir 1988 site,
which is about 50 km away, and for the same reason, the
algorithm was able to bring improvement, reducing the
annual mean bias error from 17.5 to 2.0 W m�2 (Table 1).

3.4. Comparison Between the Two Reanalysis Products

[41] The error structures of the two products share several
similar features. The bias ratios of both reanalyses show
dependence on clearness index and surface elevation
(Figures 2 and 3). In addition, the two products show similar
seasonal variations in the bias errors (Figure 6). The reason-
able correlations with the observed annual mean S suggest
the similar interannual variations in the bias errors for the
two reanalyses (Figure 5 and Table 3).
[42] There are also a number of differences. In general,

MERRA shows better agreement with observations than
NARR (Table 1 and Figure 4a). The mean errors of NARR
and MERRA for all the sites were +37.3 and +20.5 Wm�2,
respectively, and their RMSEs were 41.1 and 26.4Wm�2, re-
spectively (Table 2). The significantly positive bias in NARR
likely resulted from a combination of underestimation of
cloud and a lack of aerosols and water vapor in the atmo-
spheric column [Kennedy et al., 2011]. After correction, the
average bias errors of NARR and MERRA for all the sites

Figure 4. Comparison of the annual mean surface incom-
ing shortwave radiation flux at the calibration sites. (a) before
correction; (b) after correction. Circles: NARR; Triangles:
MERRA. Each data point represents an annual mean value
for a site year.
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were brought down to 1.6 and 3.3 Wm�2, respectively and
the RMSEs were 22.8 and 20.1 Wm�2, respectively.
[43] Both uncorrected NARR andMERRA capture well the

observed seasonal (R2> 0.8 for most sites) and interannual
variations (R> 0.6 for most sites). MERRA showed no supe-
riority compared to NARR in terms of capturing the observed
seasonal and interannual variability. The correction procedure
did not improve the capability of capturing seasonal variability
and improved slightly interannual variability for the two
reanalysis products (Table 3).

3.5. Implication for the Global Radiation
and Energy Balances

[44] Our results indicate that MERRA overestimates the
global mean S. In order to apply our algorithm on the global
domain, examining the algorithm’s performance outside of
North America is required in addition to the performance
evaluation done for the North American sites discussed
above. Towards this goal, we selected 42 BSRN sites which
have at least one year continuous S measurement and 8 sites
from the literature (supporting information Figure S1 and
Table S1). The algorithm was able to adjust the modeled an-
nual mean S towards the 1:1 line for the sites both in and out-
side North America (Figure 7). Even though the algorithm
was developed from the calibration sites on land, it improved

the results at the BSRN ocean sites: the average bias error
was 13.9 W m�2 before correction and �3.0 W m�2 after
correction for these sites (supporting information Figure
S2). Aerosol loading varies between land and ocean sites.
The improvement at the ocean sites suggests that the clearness
index as an independent variable has some capacity to implic-
itly account for the aerosol impact. For the sites outside North

Figure 5. Annual mean surface incoming shortwave radiation flux at six selected sites. Open circles:
NARR before correction; Black circles: NARR after correction; Open triangles: MERRA before correc-
tion; Black triangles: MERRA after correction; Stars: observations. (a) Old Aspen, Saskatchewan (site
ID CA-Oas); (b) Borden, Ontario (site ID CA-Cbo); (c) Morgan-Monroe State Forest, Indiana (site ID
US-MMS); (d) Walker Branch, Tennessee (site ID US-WBW); (e) Donaldson, Florida (site ID US-SP3);
(f) Vaira Ranch, California (site ID US-Var).

Table 3. Correlation Coefficients Between the Modeled and the
Observed Annual Mean Radiation at the Calibration Sites

Site Code NARR Corrected NARR MERRA Corrected MERRA

CA-Obs 0.85 0.98 0.74 0.82
CA-Ojp 0.65 0.52 0.61 0.67
CA-Oas 0.87 0.95 0.79 0.85
CA-Ca1 0.94 0.94 0.80 0.88
US-UMB 0.90 0.91 0.95 0.96
CA-Cbo 0.83 0.79 0.85 0.90
US-NR1 0.49 0.57 0.17 0.22
US-MMS 0.59 0.61 0.41 0.79
US-Ton 0.98 0.98 0.93 0.95
US-Var 0.86 1.00 0.83 0.97
US-WBW 0.90 0.84 0.94 0.96
US-Aud 0.24 0.25 0.31 0.22
US-SP2 �0.20 0.32 �0.13 0.12
US-SP3 �0.41 �0.35 �0.51 �0.50
Average 0.61 0.67 0.55 0.63
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America, the mean bias error was 14.5 W m�2 before correc-
tion and �2.1 W m�2 after correction. Excluding the four
obvious outliers, the mean bias error was 16.7 W m�2 and
1.3 W m�2 before and after correction, respectively. The four
outlier sites are in the tropics (site IDs Llorin, Kwajalein,
Momote and Tapajos). At these sites the original MERRA S
matched reasonable well with the observations, and the cor-
rection algorithm caused a low bias. If all the 12 tropical sites
are considered (Table S1), the MERRA bias is 15.4 W m�2

before correction and 0.7 W m�2 after correction.
[45] The reasonably good performance of the algorithm

both in North America and elsewhere provides the basis of
using it on the global domain. According to the default
MERRA data, the global annual mean S is 192.8 Wm�2 for
the year 2000–2004, the same years as used by Trenberth
et al. [2009]. After correction, it was reduced to 175.5
Wm�2. The default MERRA overestimates the global S by
17.3 Wm�2.
[46] Obviously, if S is adjusted in the light of this study,

equivalent adjustments on other terms of the radiation and
energy balances are required for energy closure. In Table 4,
we summarize the revised global surface radiation and
energy balance and compare it with the estimates of
Trenberth et al. [2009]. Briefly, in Trenberth et al. [2009],
the global mean S is an improved estimate from that of
Kiehl and Trenberth [1997] using ISCCP-FD and CERES
and with an improved calculation of the absorption by atmo-
spheric aerosol and water vapor. Their S value is very close to
the CERES satellite estimate (186.7 Wm�2) for the period
2000–2010 [Kato et al., 2013]. The global mean albedo is
derived from field and satellite observations. The outgoing
longwave radiation is derived from satellite observations of
emissivity and the surface temperature. The sensible heat flux

is the average of three reanalysis products spanning the range
of 15.7 and 18.9 W m�2. The latent heat flux is estimated
under the assumption that precipitation is equal to global
evaporation; this number is uncertain because considerable
uncertainty exists in precipitation measurements, especially
over the oceans. The incoming longwave radiation is
computed as a residue of the surface energy balance.

Figure 6. Same as Figure 5 except for monthly composite bias errors.
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[47] In our revised depiction, the energy balance terms were
estimated from independent sources and were independent of
the energy balance constraint. The good energy balance
closure (within 5 Wm�2) serves as confirmation that the
MERRA global S value was indeed biased high. Our
assessment was based on the following considerations:
[48] 1. We estimated the reflected shortwave radiation by

adopting the same albedo of Trenberth et al. [2009].
[49] 2. The incoming longwave radiation L↓ was provided

by Stephens et al. [2012b] according to the synthesis prod-
ucts. These authors found a systematic underestimation of
reanalyzed L↓ and attributed the bias also to the underestima-
tion of modeled cloudiness. Globally this underestimation is
on the order of 10 Wm�2.
[50] 3. As for the outgoing longwave radiation, we adopted

Trenberth et al.’s [2009] number because it is derived from
observations, not from reanalysis products.
[51] 4. The revised latent heat fluxwas an area-weighted av-

erage of a recent estimate of the terrestrial [Mu et al., 2011]
and the ocean latent heat flux [Yu et al., 2008]. Mu et al.
[2011] provides a global land surface evapotransporation
data set over 2000–2006 based on MODIS and a global
meteorological reanalysis, which has been validated at
46 Ameriflux tower sites. The ocean data set provides
multidecadal estimates of air-sea fluxes over global oceans
using bulk transfer formulation. (Here we used the ocean flux
data from 2000 to 2004, the same period as our S estimate.)
The global mean latent heat flux is insensitive to uncertainties
in the land evaporation estimates and is largely determined by
the ocean value. ReplacingMu et al.’s [2011] land value by
Jung et al.’s [2011] value (39 W m�2) changes the global
latent heat flux slightly, to 76.5 W m�2. Similarly, there is a
relatively large spread among a variety of the land latent
heat flux products examined by Jimenez et al. [2011];
when combined with the ocean flux of Yu et al. [2008],
the resulting global mean value lies in a very narrow range
of 75.2–77.0 W m�2.
[52] 5. Similarly, the revised estimate of sensible heat flux

was a combination of the land [Jung et al., 2011] and the
ocean flux [Yu et al., 2008]. Jung et al. [2011] applied a
machine learning technique-model tree ensembles to upscale
FLUXNET observations to the global scale from 1982 to
2008. We adopted their long-term mean value of the terres-
trial sensible heat flux.
[53] The downward adjustment in S is mostly compensated

by an upward adjustment of the incoming longwave radiation
by a similar amount. A recent study by Stephens et al.
[2012a] suggests that much of the extra incoming longwave
radiation (as compared to Trenberth’s assessment) to the
surface is offset by more latent heat flux from the surface.
Our study suggests an alternative hypothesis that the

compensation exists between S and L↓without the need to
adjust the other energy balance terms significantly.

4. Conclusions

[54] In this study, the surface incoming shortwave radia-
tion S modeled by two data assimilation systems, NARR
and MERRA, was evaluated against observations from 24
FLUXNET sites in the US and Canada at multiple time
scales. NARR and MERRA systematically overestimated
the surface solar radiation flux on both monthly and annual
scales. Their bias errors were larger under cloudy skies than
under clear skies and increased with increasing elevation.
The two products show similar capability to reproduce the
seasonal and interannual variations of S, and similar seasonal
variations in the bias errors. MERRA generally shows better
agreement than NARR with the flux tower measurements.
[55] A simple postreanalysis correction algorithm was

proposed on the basis of the dependence of the bias on sky
clearness and surface elevation. Results show that the correc-
tion algorithm worked well on the annual scale for the
FLUXNET sites in North America; it reduced the annual
mean bias errors from +37.2 Wm�2 and +20.2 Wm�2 to
+1.3 Wm�2 and +2.7 Wm�2 for NARR and MERRA,
respectively. The algorithm slightly improved the modeled
interannual variability for the two products. The algorithm
showed good performance as well for sites outside North
America except for four tropical sites.
[56] There are a few limitations to this algorithm. The

algorithm overcorrected S in Florida in the summer and the
annual mean S at four sites near the equator. But this simple
algorithm was able to reduce the overall mean bias errors and
the RMSEs of the sites considered.
[57] The global mean S was 192.8Wm�2 for 2000 to 2004

according to MERRA. The correction algorithm reduced it
by 9.0% to 175.5 W m�2. This corrected S is 12.5 and 8.8
W m�2 lower than that given by Stephens et al. [2012a]
and Trenberth et al. [2009]. It appears that various modeled
products likely have similar problems in underestimating
the atmospheric absorption of shortwave radiation.
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