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Abstract Sensible heat flux is an important component of the surface energy balance. Land
surface models often use the radiative surface temperature instead of the aerodynamic tem-
perature to predict the surface sensible flux, because the former is much easier to observe by
remote sensing or to compute from the surface energy balance equation. Here, measurements
from 44 FLUXNET sites are used to examine the stability and leaf area index (LAI) depen-
dence of the radiometric resistance, a resistance that should be included in the bulk transfer
method if the radiometric temperature is used for the flux calculation. Results show that the
radiometric resistance is much higher under stable conditions than under unstable condi-
tions. In unstable conditions, the radiometric resistance is highly sensitive to LAI, decreasing
exponentially as LAI increases. Omission of the radiometric resistance from the bulk trans-
fer method causes a large overestimation in the sensible heat flux, especially for low-LAI
surfaces and under unstable conditions.
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1 Introduction

The bulk transfer equation (Garratt and Hicks 1973; Monteith 1973; Garratt and Francey
1978) is a widely employed method for estimating sensible heat flux (H ) in land-surface
models (LSMs) (Mahrt and Vickers 2004), i.e.,

H = ρCp
θ0h − θa

Rah
, (1)

where ρ is air density, Cp is the specific heat capacity of air at constant pressure, θa is the
potential temperature at a reference height in the surface layer, θ0h is the effective aerodynamic
temperature of the surface, and Rah is a heat transfer resistance for the pathway from θ0h to
θa . The heat transfer resistance, Rah , can be formulated as

Rah =
[
ln

(
z−d
z0

)
− ΨM

] [
ln

(
z−d
zh

)
− ΨH

]

k2u
, (2)

where k is the von Karman constant, z is the measurement height of θa and wind speed
u, d is the displacement height, z0 is the aerodynamic roughness length, zh is the thermal
roughness length, and ΨM and ΨH are the stability correction functions for momentum and
heat, respectively. Note that z0 and zh are profile characteristics. The implicit assumption
is that the standard Monin–Obukhov functions are valid down to the top of the roughness
sublayer, but are invalid below this level.

The accuracy of Eq. 1 depends on how the surface temperature is chosen. Use of Rah

defined in Eq. 2 requires θ0h to be the effective aerodynamic temperature at z = d + zh . The
two roughness lengths in Eq. 2 are typically different (Garratt and Hicks 1973), and their ratio
is a function of surface stiffness and the roughness Reynolds number (Molder and Lindroth
2001). A universal and robust parametrization of zh across a large variety of land-cover types
does not exist, and so two alternative approaches are used to remove zh from the bulk transfer
method. In one approach, zh is assumed to be equal to z0, and Rah is simply reduced to the
aerodynamic resistance Ra ,

Ra =
[
ln

(
z−d
z0

)
− ΨM

] [
ln

(
z−d
z0

)
− ΨH

]

k2u
, (3)

while in the second approach, Rah is expressed as a combination of the aerodynamic resis-
tance, Ra , and the excess resistance, Rex ,

Rah = Ra + Rex . (4)

In neutral stability, manipulation of Eqs. 2–4 gives

Rex = In(z0/zh)

ku∗
, (5)

where u∗ is the friction velocity (Garratt and Hicks 1973).
One difficulty with the above formulations is that θ0h cannot be measured directly. In

field campaigns, this temperature is usually inferred from extrapolation of the temperature
profile to z0 or zh according to Monin–Obukhov similarity theory (Thom et al. 1975; Gar-
ratt and Francey 1978). Although z0 and zh are profile characteristics, the corresponding
roughness elements typically lie in the roughness sublayer, where the similarity theory does
not hold. Therefore, this extrapolation of the temperature profile is an important source of
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error. In addition, vertical temperature profiles are generally not available in remote-sensing
applications (Kustas et al. 2003; Matsushima 2005; Kustas and Anderson 2009; Mu et al.
2011). For these reasons, in practice, θ0h is usually approximated by the surface radiative
temperature θs , which can be measured by remote-sensing techniques or computed from the
surface energy balance equation (Sun and Mahrt 1995). Use of θs in place of θ0h for the
bulk parametrization is especially attractive to modellers, because in almost all land-surface
models, θs is an important prognostic variable derived from solution of the surface energy
balance equation.

Previous researchers have reported that θs and θ0h can be very different, in both stable and
unstable conditions, and a simple substitution of θs for θ0h can result in systematic high biases
in the prediction of sensible heat flux (Choudhury et al. 1986; Beljaars and Holtslag 1991;
Hall et al. 1992). To date, efforts to remediate this problem have fallen into three categories:

• Prediction of θ0h from θs . In some studies, the relationship between the radiative and
the effective aerodynamic temperature is expressed as a function of zh (Garratt and
Francey 1978; Brutsaert and Sugita 1992). Beljaars and Holtslag (1991) suggested that
the relationship should depend on the temperature scale θ∗ (defined as H/ρCpu∗) and
thermal stability. Mahrt and Vickers (2004) and Matsushima (2005) found that θs − θ0h
is related to solar radiation and leaf area index (LAI).

• Introduction of a new roughness length zr . Here, zn is called the “radiometric roughness
length,” being smaller than zh by up to a few orders of magnitude. In a number of
studies, the difference between the radiometric roughness length zr and z0 is represented

using a redefined kB−1 parameter
(
kB−1 = ln z0

zr

)
, instead of the standard formulation

(kB−1 = ln z0
zh
); this modified kB−1 parameter is related to the roughness Reynolds

number and θs (Kustas et al. 1989; Sugita and Brutsaert 1990; Stewart et al. 1994;
Sun and Mahrt 1995; Troufleau et al. 1997; Verhoef et al. 1997; Yang et al. 2003) or is
physically modelled based on the “localized near-field” Lagrangian theory (McNaughton
and Vandenhurk 1995; Su et al. 2001). These studies show that kB−1 behaves erratically,
and that a universal parametrization may be unattainable.

• To add an extra resistance, Rr : this “radiometric resistance” is added to the bulk transfer
formulation (Lhomme et al. 1988; Stewart et al. 1994), such that

H = ρCp
θs − θa

Rr + Rah
, (6)

where Rah = Ra + Rex . According to Lhomme et al. (1988) and Stewart et al. (1994),
Rr is generally larger than Rah .

A number of studies have suggested the importance of LAI and thermal stability in con-
trolling the biases caused by substituting θs for θ0h . Beljaars and Holtslag (1991) found
that θ0h − θs varies from 6K in stable conditions to -6K in unstable conditions. Both
Troufleau et al. (1997) and Verhoef et al. (1997) found that, for sparse vegetation (low
LAI), kB−1 shows a large mean value and a large variation. Mahrt and Vickers (2004)
reported a significant positive linear dependence of θs − θ0h on solar radiation and a nega-
tive dependence on LAI. Solar radiation partly influences the heat transfer through its effect
on thermal stability. These relationships have been established with observations over sev-
eral surface types, including a bare-soil site, three grassland sites, a cropland site, and four
forest sites. Kustas et al. (2007) found that the slopes and intercepts of the linear regres-
sions that Mahrt and Vickers (2004) proposed vary considerably when applied to a wider
range of landscapes (LAI 0.5–3.0) and meteorological conditions. Similarly, the correc-
tion factor proposed by Matsushima (2005) for θs − θ0h has a strong correlation with LAI.
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108 L. Zhao et al.

Recently, Zheng et al. (2012) developed new formulations of the roughness lengths using
a green vegetation fraction derived from the remotely sensed normalized difference veg-
etation index, the latter being known to be a good estimator of LAI. The stability effects
on the radiometric resistance Rr or kB−1 have been somewhat overlooked in previous
studies (Stewart et al. 1994; Troufleau et al. 1997; Matsushima 2005); for example, Mat-
sushima (2005) showed that the effects of atmospheric stability in the surface layer can
be ignored in the parametrized radiometric roughness length or temperature “correction”
factors.

The primary objective of the present study is to revisit the roles of LAI and thermal stability
in the bulk formulation (Eq. 6). Our focus is on patterns of the radiometric resistance Rr across
a diverse set of ecosystems and local climates. Previous studies have been restricted to a small
number of sites (one to nine). Here, we deploy data obtained from 44 sites in the FLUXNET
network. Previous reports have confirmed a large variation in hourly kB−1 values (Troufleau
et al. 1997; Verhoef et al. 1997), partly due to the high sensitivity of kB−1 to measurement
errors in the micrometeorological variables (Verhoef et al. 1997). Here, we examine how
mean resistance varies across the sites, instead of using 30-min values at a specific site as
done in previous studies. The advantage of this site-mean approach is that it identifies patterns
caused by land-cover differences, compared with synoptic meteorological fluctuations and
instrument noise. In addition, we provide an assessment of the prediction error in sensible
heat flux caused by omission of Rr from Eq. 6.

2 Data and Methods

2.1 Surface Observations

We examine tower observations from 44 FLUXNET sites in the USA, Canada, and China
(Table 1). FLUXNET is a global network of surface eddy-covariance towers, with the obser-
vations covering a large range of u∗ (site annual mean value 0.1–1.5ms−1). Although u∗
is related to wind speed, the annual mean value can be viewed as a proxy of the surface
roughness, having a high correlation with z0 (linear correlation = 0.60). We chose these
sites because measurements of the longwave components of the surface radiation balance
were available, in addition to the energy and momentum fluxes and micrometeorologi-
cal variables, and for a sufficiently long time (>12months). They span a large range of
LAI (0 to 9) and canopy height (0.1 to 33m), and are divided into four categories: 19
conifer forest sites (with nearly constant LAI throughout the year), 12 deciduous forest
sites (with seasonal LAI change), 6 grassland sites (with seasonal LAI change), and 7 crop-
land sites (with large LAI changes between growing and nongrowing seasons). For each
site, we selected one year of measurements and confined our analysis periods to Decem-
ber to February, and June to August, for the winter and summer seasons (>90 % data
coverage for each site for each season). We also separate the data into stable and unsta-
ble conditions. The original data are 30-min values for 40 sites; for four sites (site IDs:
US-MMS, US-Ne1, US-Ne2, and US-Ne3; Table 1) only hourly measurements are avail-
able.

Except for the Mead irrigated cropland site in Nebraska (site ID US-Ne1, Table 1), we
report all results as sitemeanvalues.At theMead cropland site, high-frequencymeasurements
of LAI were available from 2006 to 2012, showing large LAI changes within the growing
season. To capture these seasonal variations, we analyzed the daily mean quantities for this
site.
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Fig. 1 Schematic of the
resistance decomposition model
for calculating the sensible heat
flux, H . θ0h is the aerodynamic
temperature at the thermal
roughness height; θ0 is the
aerodynamic temperature at the
momentum roughness height

θs (Radiative temperature)

H 

θoh 

θo 

θa 

Rr 

Rex 

Ra 

2.2 Data Analysis

Wecomputed the half-hourly or hourly Rr using Eq. 6, where the total heat resistance consists
of three additive components (Fig. 1). The aerodynamic resistance Ra was determined with
Eq. 3, and the excess resistance Rex was approximated by

Rex = 2

ku∗
, (7)

which indicates that z0/zh = 7.4, a typical ratio for rough surfaces (Garratt 1994). The
corresponding kB−1 value is 2. Making use of Eqs. 4, 6, and 7, we obtain an expression for
computing Rr ,

Rr = ρCp (θs − θa)

H
− Ra − 2

ku∗
. (8)

In Eqs. 2, 3, and 8, H, θa , and u∗ were available from direct tower measurements, while θs , ρ,
Ra , and the stability correction factorsΨM andΨH were calculated usingmeasured variables,
and d and z0 were assumed as 70 % and 10 % of the canopy height (h), respectively. Note
that ΨM and ΨH were calculated according to the Businger–Dyer formulation, though we
tested other formulations of the stability correction functions (Brutsaert 1992), finding that
the results obtained were insensitive to the choice of stability correction functions.

We separated the half-hourly or hourly data into stable and unstable conditions using the
sign of the surface sensible heat flux. All observations with H < −5Wm−2 were grouped
into stable conditions, and all observations with H > 5Wm−2 were grouped into unstable
conditions. Observations with −5 < H < 5Wm−2 were considered as neutral or near-
neutral conditions and were not used.

The surface radiative temperature Ts was determined from the upward longwave radiation
flux and corrected for the surface reflection of the downward longwave radiation flux, as

Ts =
[
L↑ − (1 − ε) L↓

εσ

]
, (9)

where L↑ is the upward longwave radiative flux, L↓ is the downward longwave radiative flux,
ε is the surface emissivity (assumed to be 0.98), and σ is the Stefan–Boltzmann constant.
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3 Results and Discussion

3.1 Relations of Heat Resistances to LAI Under Unstable Conditions

Here, we provide a detailed examination of the resistances under unstable conditions. Pre-
vious studies have shown that the bulk formulation is much more uncertain under unstable
conditions than under stable conditions. The excess resistance Rex shows no obvious depen-
dence on LAI (Fig. 2e, f). This resistance arises from the fact that heat is transferred by
molecular diffusion through the laminar boundary layer on foliage in immediate contact with
the surface, whereas momentum exchange is more efficient due to the existence of both vis-
cous shear and form drag (Thom 1972). The insensitivity of Rex to LAI suggests that Rex is
controlled primarily by these processes at the leaf scale and is not affected by the amount or
arrangement of foliage elements at the canopy scale.

The radiometric resistance Rr shows amuch stronger relationship with LAI than does Rex ,
with an exponential decay as LAI increases (Fig. 2a, b). For small LAI values (L AI < 1), Rr

is 3.7 times larger than Rex in the summer and 1.4 times larger in the winter. An alternative
interpretation is that the effective zr is much smaller than zh for sparse vegetation. Because at
sites of larger Rr the temperature difference θs−θ0h should be larger inmagnitude, our results
are consistent with those of Mahrt and Vickers (2004). Using airborne measurements from
the Southern Great Plains Experiment, these authors showed that θs − θ0h can be described
by the simple linear model

θs − θ0h = C [S − Cs (L AI − L AIref )] , (10)

where C and Cs are positive regression coefficients, S is the solar radiative flux, and the
reference LAI value (L AIref ) is approximately 1. This expression illustrates that θs − θ0 is
large when LAI is small. They also acknowledged that a more complex function of LAI is
required for very large LAI. The dependence on S is explained by the fact that sunlit surfaces
warm up more rapidly than the air at the roughness height.

The aerodynamic resistance Ra behaves similarly to Rr as LAI changes (Fig. 2c, d), and
in terms of magnitude, Ra is comparable to Rr . The physical explanation of the exponential
correlation between the LAI and the aerodynamic resistance is connected to convection effi-
ciency. High LAI usually corresponds to aerodynamically rough surfaces; these surface can
trigger large coherent eddies that are efficient in heat convection, whereas low-LAI surfaces
(grassland or fallow cropland) are more like bluff-rough surfaces that are less efficient in
generating energetic eddies (Stewart et al. 1994; Voogt and Grimmond 2000).

3.2 Summer Versus Winter

There are seasonal differences in the three resistances (Table 2), with Fig. 2 showing that the
general relationships with LAI are similar between the summer and winter seasons. In the
winter, when LAI is smaller, the site-mean values of Rr and Ra are more scattered than in
the summer (Fig. 2a–d). One reason is related to deciduous forest sites, which have low LAI
in the winter, but are still aerodynamically rough. Instead of assuming that z0 is proportional
to stand height, an improved parametrization (e.g., Raupach 1994) where z0 is a function of
both canopy height and LAI, may reduce the scatter.

In terms of magnitude, Rr shows higher values in the winter than in the summer, and the
other two resistances do not show strong seasonal differences. The Rr seasonality is partly
explained by LAI changes. For the deciduous forest group, the average winter LAI is low
(1.5), and the average Rr is 66 sm−1. In the summer, when the average LAI increases to
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Fig. 2 Relationship between the three heat resistances and LAI under unstable conditions. a, c, e summer;
b, d, f winter. Each date point represents a site seasonal mean value. Lines are regression fits to the data:
Rr , y = 24.4exp(−0.5x) (summer), y = 14.9exp(−0.2x) (winter); Ra , y = 35.9exp(−0.4x) (summer),
y = 22.9exp(−0.6x) (winter); Rex , y = 5 sm−1 (summer), y = 4 sm−1 (winter). For each stability class,
the same fit lines are shown in the three panels. The first coefficient in the exponential functions has the
dimensions of sm−1
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Table 2 Statistics of the three component resistances among all the sites

Veg. type Season Stability LAI Rr Ra Rex

Mean ± s.e. (sm−1) Mean ± s.e. (sm−1) Mean ± s.e. (sm−1)

Deciduous Summer Unstable 4.1 4.3 ± 09 7.6 ± 2.1 5.5 ± 1.2

Stable 46.8 ± 6.9 54.8 ± 7.6 9.5 ± 0.8

Winter Unstable 1.5 8.6 ± 1.8 9.3 ± 3.1 4.1 ± 0.5

Stable 78.3 ± 9.7 28.1 ± 5.3 6.1 ± 0.6

Conifer Summer Unstable 4.0 6.4 ± 1.8 8.2 ± 2.5 4.1 ± 0.2

Stable 51.8 ± 6.3 66.5 ± 6.0 10.6 ± 0.8

Winter Unstable 3.4 9.3 ± 2.0 9.2 ± 2.4 3.8 ± 0.4

Stable 59.8 ± 9.4 44.0 ± 5.9 7.3 ± 0.8

Grass/shrub Summer Unstable 1.2 17.5 ± 5.2 27.7 ± 3.7 6.0 ± 0.5

Stable 31.8 ± 1.6 62.6 ± 8.3 8.8 ± 0.9

Winter Unstable 0.3 16.9 ± 7.5 20.6 ± 5.7 5.4 ± 1.4

Stable 56.0 ± 17.8 44.2 ± 11.9 7.1 ± 1.8

Crop Summer Unstable 3.6 8.5 ± 0.5 19.8 ± 1.7 6.3 ± 1.0

Stable 98.3 ± 8.5 58.3 ± 5.2 8.8 ± 0.8

Winter Unstable 0.4 17.5 ± 4.8 22.7 ± 1.8 7.4 ± 0.6

Stable 98.1 ± 16.2 50.4 ± 2.4 8.9 ± 0.1

4.1, the average Rr is 37 sm−1. It appears that the seasonal LAI change alters the radiative
property of the surface that is related to the radiometric resistance, but the exact nature of
this property is not known.

For the coniferous forest site group, because the difference in the average LAI between
the summer and the winter season is very small, the seasonal difference in Rr is greatly
reduced (Table 2). The LAI difference is not zero between summer and winter for this group
because of the presence of deciduous understorey vegetation and deciduous trees at some of
the coniferous sites.

The Rr in the cropland group behaves similarly to in the deciduous forest group, showing
much larger values in the winter than in the summer. The grassland/shrubland group, unlike
the deciduous forest and cropland groups, shows little difference in Rr between summer and
winter under unstable conditions. This is because, for grassland, unless it is burned, dead
vegetation is still standing at the surface, whereas for cropland there is a drastic difference
in the vegetation stands between the growing and the nongrowing season.

3.3 Daily Variations

To further investigate the influence of LAI, we analyzed the daily variations of the radio-
metric resistance for a cropland site with continuous maize plantation, Mead irrigated site
in Nebraska (site ID US-Ne1, Table 1). The growing season is from the beginning of June
to the end of September. This irrigated cropland site has a more variable LAI over the year
compared with a typical forest or grassland site.

The patterns seen in the seasonal mean values across multiple sites still hold for the daily
values at this specific site (Fig. 3). Themultiyear data showobvious annual cycles of Rr , in the
range from−20 to 330 sm−1 (Fig. 3a, b).As expected, the trend of the Rr cycle is just opposite
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Fig. 3 Correlation between the daily radiometric resistance and LAI at the Mead irrigated site in Nebraska
(site ID US-Ne1): a time series under unstable conditions (daytime), b time series under stable conditions
(nighttime), c scatter plot under unstable conditions, d scatter plot under stable conditions. Each dot in a and
c represents an average value of all hourly data of a given day for which H > 5Wm−2; each dot in b and d
represents an average value of all hourly data of a given day for which H < −5Wm−2. The regression line
is reproduced from Fig. 2 and represented by y = 24.4exp(−0.5x)

to the phase of the crop LAI cycle. The seasonal pattern is stronger under unstable conditions
than under stable conditions, as is illustrated by the much clearer variations between the
growing and nongrowing season in Fig. 3a than Fig. 3b. This is consistent with what was
observed for the seasonal mean values at multiple sites (Fig. 2).

Under unstable conditions, the day-to-dayvariation is smaller than the contrast between the
growing and the nongrowing season; For example, in the year 2008–2009, the standard devi-
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ation of the daily Rr is 6 sm−1 for the growing season (10 June 2008–7 October 2008) under
unstable conditions. For comparison, themean difference between the two seasons is 57 sm−1

under unstable conditions. The day-to-day fluctuations were caused by variations in the site
microclimatic conditions. Since the goal of this research is to better isolate the influences
on the heat resistances of different land-surface types, these variations represent unwanted
“random noise.” By using seasonal mean values, these fluctuations were filtered out.

Under unstable conditions, the daily mean Rr shows a pattern (Fig. 3c) similar to the
seasonal mean across the sites (Fig. 2a), that is, an exponential decay of Rr with increasing
LAI. Although the general pattern is similar to that seen for the seasonal mean values at
multiple sites, the regression curve is different. The difference is caused by the negative
radiometric resistance values that occurred persistently in the growing season (Fig. 3a, c).
The two outliers in Fig. 3c probably result from measurement errors. These two dates are 12
July 2006 and 6 July 2007. For both days, only one valid hourly observation is available for
calculating the resistance because, for all other hourly measurements, the sign of θs − θa is
opposite to the sign of H . Under stable conditions, this exponential decay relationship is no
longer detectable (Fig. 3d). Instead, Rr appears independent of LAI. The mean Rr value is
105 sm−1.

Negative resistances are physically unacceptable. Two possible causes of the negative Rr

values at this site are contamination of the air temperature measurement by solar heating, and
inaccurate z0 parametrization. If θa is measured correctly, θs − θa should be approximately
zero when H is 0Wm−2. However, the scatter plot of half-hourly H versus θs − θa for this
site (Supplementary Fig. S1) reveals that, at H = 0, the temperature difference θs −θa has an
offset of 1 − 1.5K, indicating a potential bias in the temperature measurement. One source
of bias error is related to sunlight heating of the air temperature sensor. Another possible
source of error is the temperature calibration. The manufacturer’s original calibration, not
necessarily still accurate, was used at this site. Indeed, reducing θa by 1K would eliminate
most of the negative Rr values and bring the result into better agreement with the site mean
regression curve (Fig. 4a).

Raupach (1994) showed that z0 should responddynamically to both canopyheight andLAI.
We thus parametrized z0 as a function of canopy height and LAI according to Raupach (1994)
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Fig. 4 Sensitivity analyses to air temperature bias and z0 parameterization under unstable conditions for the
Nebraska site: a θa reduced by 1K; b original θa , z0 = exp(−2.3)hL AI−0.15
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to determine whether the negative Rr values may be caused by inaccurate z0 parametrization.
Comparison of this new result (Fig. 4b) with the calculation using fixed z0 (Fig. 3c) shows
that this dynamic parametrization has little effect on the negative Rr values.

3.4 Relations of Heat Resistances to Thermal Stability

All the three component resistances are generally larger under stable conditions than under
unstable conditions (Figs. 2, 5). Table 2 presents the average resistances across all sites under
unstable and stable conditions and in the summer and the winter. Our results confirm that
stable stratification tends to suppress heat transfer. This thermal stability effect has been
known for a long time for aerodynamic resistance (Garratt 1994). According to our results,
thermal stability has similar impacts on the radiometric resistance. Table 2 shows that Rr is
larger under stable conditions than under unstable conditions in each vegetation type group,
and in both winter and summer. On average, summer Rr is 68 sm−1 larger, and winter Rr

is 64 sm−1 larger under stable conditions than under unstable conditions for all the selected
sites. It appears that stable stratification enlarges the distance between zh and zr .

Under stable conditions, there is no apparent correlation betweenLAI and the aerodynamic
resistance (summer: R2 < 0.05; winter: R2 < 0.01), a pattern that is different from that
observed in unstable conditions (summer: R2 > 0.58; winter: R2 > 0.30). Under stable
conditions, Rr shows no apparent correlation with LAI either (Fig. 5a, b), and is on average
40 sm−1 larger than Rex in the summer and 65 sm−1 larger in the winter for all the sites
examined in this study. The Rr values are compatible with the Rr estimates by Stewart et al.
(1994) (22–73sm−1). Under unstable conditions, the average Rr is 8 sm−1, only slightly
larger than Rex (5 sm−1).

3.5 Impacts of Radiometric Resistance on Sensible Heat Flux Calculation

To assess the impacts of radiometric resistance on the sensible heat flux calculation, we first
calculated the sensible heat flux using the complete Eq. 6 and again by omitting Rr from
Eq. 6, as

Ĥ = ρCp
θs − θa

Ra + Rex
. (11)

In Eq. 6, Rr was obtained from the regression fit functions of LAI shown in Fig. 2a (sum-
mer) and 2b (winter) for unstable conditions and constant values of 50 sm−1 (summer) and
66 sm−1 (winter) for stable conditions, and other termswere provided by fieldmeasurements.
The prediction error e and the relative prediction error er are defined as

e = Ĥ − H, (12)

er = e

H
, (13)

where H is the observed sensible heat flux.
Unsurprisingly, omission of Rr results in an overestimation of the magnitude of the sensi-

ble heat flux.Under stable conditions, the prediction error has no apparent correlationwith the
site LAI. Under unstable conditions, the prediction error is much larger for low-LAI sites than
for high-LAI sites (Fig. 6a). The relative error decreases as the LAI increases under unstable
conditions and has no apparent correlation with LAI under stable conditions (Fig. 6b). These
results show that the largest overestimation due to omission of Rr occurs at low-LAI surfaces
and under unstable conditions.

123



118 L. Zhao et al.

H
ea

t 
re

si
st

an
ce

 (
s 

m
-1

)

0

20

40

60

80

100

120

140

160
R

a
fitted curve for R

ex

H
ea

t 
re

si
st

an
ce

 (
s 

m
-1

)

0

20

40

60

80

100

120

140

160
R

r
fitted curve for R

ex

H
ea

t 
re

si
st

an
ce

 (
s 

m
-1

)

0

20

40

60

80

100

120

140

160
R

ex
fitted curve for R

ex

H
ea

t 
re

si
st

an
ce

 (
s 

m
-1

)

0

20

40

60

80

100

120

140

160
R

a
fitted curve for R

ex

H
ea

t 
re

si
st

an
ce

 (
s 

m
-1

)

0

20

40

60

80

100

120

140

160
R

r
fitted curve for R

ex

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

H
ea

t 
re

si
st

an
ce

 (
s 

m
-1

)

0

20

40

60

80

100

120

140

160
R

ex
fitted curve for R

ex

a b

c d

e f

Fig. 5 Same as Fig. 2 but for stable conditions
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Fig. 6 Bin average prediction
errors of sensible heat flux caused
by omission of the radiometric
resistance: top panel prediction
error; bottom panel relative
prediction error. Error bars
denote 1 s.e.
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Similar results are found in the literature. In an experiment in a soybean field, Lee et al.
(2009) reported larger prediction errors (up to 308Wm−2) for the early part of the growing
season (L AI < 2) than in the middle part of the growing season (error < 15Wm−2) when
the LAI is large (L AI = 7.6). Chen and Zhang (2009) compared the observed heat transfer
coefficient Ch from Ameriflux sites and the modeled Ch according to the Noah LSM, and
reported large model overestimations for short vegetation. In the LSM, the two roughness
values (zh and z0) are used to calculate Ch without the radiometric resistance. Because Ch is
inversely proportional to the heat resistance, overestimation of Ch indicates overestimation
of H in the model. Zheng et al. (2012) reported a large cold bias in the daytime θs (up to
−15 ◦C) produced by NCEP Global Forecast Modelling System operational modeling over
the aridwestern continentalUSA,whereLAI is very small. In theGlobal Forecast System, θs is
solved from the energy balance equationwith H parametrized according to Eq. 1 andwith the
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approximation θs = θ0h . In other words, the default NCEP calculation omits the radiometric
resistance. By adding the radiometric resistance as a function of vegetation fraction to the
bulk formula, Zheng et al. (2012) significantly reduced the cold bias in θs (average bias
< −4 ◦C). Similarly to our findings, they found that their Rr formulation had a minimal
effect on the nighttime θs under stable conditions. Recently, Zhang et al. (2014) also reported
a large high bias (120Wm−2) in H calculated with a LAI-independent parametrization of zr
for a desert steppe site, and using a time-varying roughness length for heat as a function of
vegetation growth reduced the root-mean-squared error of H by more than half.

4 Conclusions

Asimple resistancemodelwas used to decompose the total resistance to heat transfer from the
surface to a reference height into three additive components: radiometric resistance, excess
resistance, and aerodynamic resistance. On average, all resistances are greater under stable
conditions than under unstable conditions. The excess resistance shows no apparent relation
to LAI changes under both unstable and stable conditions. The aerodynamic and radiometric
resistances decrease exponentially as LAI increases under unstable conditions. Under stable
conditions, the aerodynamic and radiometric resistances show no apparent relation to LAI
changes and are much larger than the excess resistance. Daily data from a cropland site show
that the correlations with LAI seen in the seasonal mean values across multiple sites still hold
for the daily values. High bias in the sensible heat flux calculation occurs if the radiometric
resistance is omitted from the bulk transfer formulation, with the overestimation larger at
lower LAI. This problem is especially severe at low LAI (< 2) and under unstable conditions.
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