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Abstract

An ultra-long NiCo precursor having a morphology similar to Millepore species (Millipore sp.) was
prepared to utilize a green homogeneous precipitation method. The Millepore species -like component
is [MCOs]x - [M(OH),ly - nH,O (M = Co, Ni;x,y,n = 1-5), which is a precursor of NiCo metal
compounds, hydroxides, and oxides. There is no organic residue in the prepared product, making this
synthetic procedure green. At the same time, the precursor grown in situ on carbon fiber produces
ordered and controllable Millepore sp.-like materials as well as a stand-by electrode. The resistance of
the adhesive bond to the glassy carbon electrode by the cobalt-nickel material is avoided. Following
electrochemical activity tests, the Millepore sp.-like NiCo precursor showed significant redox activity
on dopamine and uric acid. Differential pulse voltammetry can simultaneously detect two substances
with excellent linear at the range of uric acid 0.04-0.2 mM and dopamine 6-20 ;M.

1. Introduction

The preparation of ultra-long structural materials is conducive to expanding its application in the macroscopic
field of electronic processing and biosensors and can be better combined with general technology [1]. At the
same time, most modified electrodes combine the modified material with an electrode such as glassy carbon
using an adhesive. The addition of the adhesive reduces the electron transport process between the modified
material and the electrode, which increases the electron retarding effect of the modified electrode [2]. Therefore,
an ultra-long structure grown in situ can prevent low electrochemical activity caused by the binder [3], while the
3D nanostructure grown on the surface helps prevent the electrode from collapsing and enhances the
electrochemical activity [4]. For example, Fan et al [5] prepared a gas sensor based on ultra-long Zn,SnO,4-ZnO,
which has high sensitivity and selectivity to hydrogen. Yang et al [6] achieved a low detection limit for
trimethylamine using an ultra-long MoO; material. Wang et al [7] observed high sensitivity to gas and light
through the preparation of ultra-long, single-crystal Ag,S nanowires. So far, there have been few NiCo
composites for ultra-long porous structures.

Co and Nihave attracted extensive attention due to their unique atomic arrangement and productive
valence state transformations in materials such as alloys [8], hydroxides [9], and oxides [10]. The hollow
structures [11, 12], hierarchical structures [13—15], and core—shell structures [16, 17] of these materials have
been reported in the energy storage and conversion devices [18—21] and electrochemical sensing [22—-24] fields.
For example, A lower detection limit (0.42 nM) for estriol in milk was established using NiCo oxide nanoflakes
prepared by Fu et al[25]. The excellent electrochemical activity of NiCo materials is due to the synergistic redox
reaction between them; this reduces the energy barrier of single Co/Ni materials with a substrate [26]. In
addition to the synergistic effect of bimetals, morphology, and structure play an essential role in the
electrochemical activity of NiCo materials. Joseph et al [27] prepared a NiCo hydroxide with a porous structure,
a capacitance of 1380 Fg~ ', and achieved 5,000 stable cycles in the electrolyte. However, the NiCo hydroxide/
carbon with an ultra-lamellar structure achieved a sphere capacitance of only 957 Fg ™" and stable for 3000 cycles
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[28]. In short, the higher comparison area, thus reducing the ion diffusion distance, has led to widespread
interest in modifying electrode materials.

The NiCo mentioned above was obtained by chemical reaction of Ni/Co salts; then, applying different
morphologies of material formation were studied. Most materials were obtained hydrothermally followed by
precipitation; the hydroxide is then obtained by loss of carbonate at lower temperatures while the oxide is
obtained by further heating at higher temperatures. However, none of these efforts pay attention to the
performance of the precursor. Here, we prepared this precursor material, especially the carbon fiber as a
template to prepare an ultra-long, ordered cobalt-nickel /carbon precursor fiber (NiCo precursor/C). We
expect that the NiCo on the microscopic surface is porous, and the carbon fiber integrates into the material in an
orderly manner producing an ultra-long structure as a stand-by electrode. Finally, the electrochemical activity of
this composite was verified by electrochemical detection of dopamine (DA) and uric acid (UA).

2. Experimental process

2.1. Reagents and apparatus

All chemical reagents used were analytical grade and used without further purification; high purity water (MiliQ
system, Millipore Co.) was used throughout. Nickel nitrate (Ni (NO3),-6H,0), cobalt nitrate (Co(NO3),-6H,0)
(Zhongguo Group Chemical Fiber Reagent Co., Ltd) and urea (Zhongguo Group Chemical Fiber Reagent Co.,
Ltd) was used as synthetic precursors. NiCo was generated in situ on purchased carbon fibers (Jiangsu Sutong
Carbon Fiber Co., Ltd).

X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250), x-ray diffractometry (XRD, Rigaku D
max,/RB, Cu palladium Ka ray, A = 0.1542nm, V = 36kV,I = 30 mA) and FTIR (Nicolet FTIR-NEXU 670,
4000—400 cm ™', room temperature) were used to characterize prepared samples. Field emission scanning
electron microscopy (FE-SEM, Hitachi S-4800, 5 kV) was used to study sample morphology.

2.2. In situ synthesis of the NiCo precursor/C working electrodes

A carbon fiber (~0.1 g) and approximately 5 cm long, 4-5 pim in diameter (depending on growth time) was
added to a solution with 0.01 mol 1! nickel nitrate, 0.02 mol 1" ! cobalt nitrate, and 1.2 mol 1! urea; this
solution was ultrasonically dispersed for 1 h. The reaction temperature was controlled at 90 °C and magnetically
stirred; precipitation was ended once the upper layer was colorless. After filtering the product, it was washed
several times with ethanol and deionized water, respectively. Then placed in an oven and dried at 60 °C for 10 h
to obtain the target product. The obtained NiCo precursor/C can be directly used as a working electrode
without any further treatment, and the electrode is represented by a NiCo precursor/C (figure 1). When not in
use, the electrode was placed in a 0.1 M phosphate buffer and stored at 4 °C.

2.3. Electrochemical experiments

The electrochemical properties of prepared materials were measured using a CHI-660E electrochemical
workstation (Shanghai Chenhua); those properties included cyclic voltammetry (CV) and differential pulse
voltammetry (DPV). Using a conventional three-electrode system, a NiCo precursor/C was used as a working
electrode; an Ag/AgCl electrode was used as a reference electrode, and a platinum electrode was used as a
counter electrode.

3. Results and discussion

3.1. Characterization of NiCo Precursor/C
The morphology of the aligned carbon fibers with or without NiCo was measured using SEM. Figure 2(A) shows
acarbon fiber before cobalt-nickel growth; the carbon fiber can be several centimeters long, and the degree of
order can be controlled. Figures 2(B) and (C) are the microporous morphological NiCo complexes grown it situ
on carbon fibers. Some studies have shown that nanomaterials and carbon fiber carriers constitute a core—shell
structure, stabilizing the ultra-long structure and achieving more active shell properties [29-31]. Similar to
figure 2(D), the microporous fossil structure, the NiCo alloy on the surface of the carbon fiber is arranged in the
form of Millepore sp. on the surface of the carbon fiber (figure 2(B)). This morphology has high nanosheet
density, meaning the ultra-long structure enlarges the specific surface area of the electrode, increases the charge
flux, and further increases electron transport speed [32]. The patchwork of nanosheet alignments allows the
carbon fiber surface to exhibit a porous structural feature that reduces the diffusion distance of the ions while
allowing the electrolyte material to penetrate the interior of the active material [33, 34].

In order to understand its constituent components and structural characteristics, the precursor was
subjected to crystal form analysis as well as elemental analysis. As seen in figure 3(A), the red, blue, and black
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Precursor/CF sectional view

iy

Figure 2. (A) SEM image of carbon fiber without the NiCo precursor, (B) and (C) high-power SEM image of the NiCo precursor/C,
(D) morphology of Millepore sp. (Photographed at Nanjing Paleontology Museum).

curves represent XRD patterns of the NiO, Co3;0,, and NiCo,O, standards, respectively. Based on the intensity
and width of the diffraction peak, we noticed that the addition of Ni decreased the crystallinity of the NiCo
compound.

Figure 3(B) is the FT-IR of the precursor (400-4000 cm ™~ '); the broad peak of 3400 ccm ™ is the stretching
vibration vOH of the adsorbed water on the material. The weak peak of 1600 cm ™" is the bending vibration SOH
of water. The weak absorption peak at 2300 cm ™" is a typical vibration of the C=N triple bond anion and
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Figure 3. (A) XRD patterns, (B) FT-IR of the NiCo precursor/C.
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Figure 4. (A) XPS broad spectrum scanning of NiCo precursor/C and (B) high-resolution XPS of Co 2p, (C) Ni 2p.

represents a by-product of urea hydrolysis [35]. The 1300 cm ™' peak is attributed to CO3~ in the precursor. The
peak below 1000 cm s the vibration between the metal oxide atoms, which can be attributed to the oxidized
composite of Niand Co.

XPS provided surface information and characterized the oxidation state of the detection element. Figure 4
shows the spectra of the NiCo precursor and core grades Co 2p and Ni 2p. The Co 2p spectrum (figure 4(B)) is
suitable for two spin—orbital double peaks at 780.3 eV Co 2p;,, and 795.3 eV Co 2p; /,, representing the
characteristics of Co® " and Co’ ", and two not apparent vibration satellites [29]. The Ni 2p peak features two
spin-orbital bimodal peaks at 855.8 €V Ni 2ps /, and 873.2 eV Ni 2p; ,,, representing Ni** and Ni**, while the
spin-orbit bimodal is accompanied by two vibrating satellites located at 861.8 eV and 881.2 eV [36] (figure 4(C)).
Based on the above composition analysis, we speculate that the composition of the precursor is
[MCO;]x-[M(OH),]y:-nH,O (M = Co, Ni;x,y,n = 1-5).

3.2. Electrochemical characterization

The electrochemical properties of the NiCo precursor/C were investigated using a conventional three-electrode
measurement with pH 7.0 PBS as the electrolyte on a CHI660E electrochemical workstation. The CV results for
three substances (DA, UA) are shown in figure 5. Figure 5(A) is the CV of uric acid. From 0-0.8 V, only the
oxidation peak of uric acid appeared at 0.35 V, indicating that UA irreversibly reacts to NiCo precursor/C.
Figure 5(B) contains two oxidation peaks in the positive scan at —0.208 V, and one reduction peak during the
negative scan at 0.151 V for dopamine. The additional irreversible dopamine oxidation peak during the positive
scan corresponds to a dopamine oxidation intermediate (scheme 1); the presence or absence of intermediates is
considered to be the key to demonstrating whether the electrochemical mechanism of DA is a single-electron
transfer reaction or a two-electron transfer reaction [37, 38].

The CV of the NiCo precursor/C for two substances indicated that the two substances undergo different
electrochemical processes. DPV has higher sensitivity than the CV and usually used for quantitative analysis of
substances. Figure 6 show the DA and UA response of DPV at NiCo precursor/C working electrode when one
concentration is kept constant, respectively. As shown in figures 6(A) and (C), the peak potentials of DA and UA
are0.19,and 0.34 V, respectively, and the two substances separate, a change in the content of one substance does
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Figure 6. The DPV curve (A), (C) and the corresponding linear relationship (B), (D) when UA and DA exist in each other.
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Table 1. UA and DA by DPV using different electrodes.

Sensitivity (linear range).

pA M
Electrode UA DA References
S$nO, (107'-10) — [39]
GCE 0.66(1-200) — [40]
GCE 0.1 3.54(0.1-20) [41]
ZnO-CuxO/polypyrroe 0.2(0.5-70) 0.04(0.1-130) [42]
Array of recessed Au /polymethylmethacrylate 6.38(20-170) 0.66(3.5-125) [43]
ZnO/CF 9.84(5-70) [44]
ZnO/CF (20-200) [45]
Pd /graphene/chitosan (0.5-200) (0.5-15) [46]
(20-200)
Graphene flowers /CF (3.78-183.87) (0.7-45.21) [47]
nitrogen doped graphene (0.1-20) (0.5-170) [48]
cobalt-nickel/CF 0.04-0.20 mM 6-20 uM This work

not interfere with another substance. When UA has an increasing concentration from 0.04—0.20 mM with fixed
0.01 mM DA, the peak current of DA is stable and has a good linear. Plot concentration versus UA current, the
linear relationship is I,; = 34.60308 C + 0.09134 (r = 0.9995) seen in figure 6(B). That indicates that the
presence of DA does not interfere with the detection of UA. Similarly, when UA in solution was present at 0.1
1M, DA was stable at 6-20 M also had a good linear relationship. The linear relationship is I,,, = 0.11836 C —
0.023364 (r = 0.9984) seen in figure 6(D). The limit of detection for UA and DA are 0.027 mM and 0.175 uM,
respectively, which acceptable performance compared with previous work (table 1).

Therefore, we have reason to conclude that there is negligible detection interference between DA and UA.
Besides, this level of detection will overlap with the upper half of the clinically relevant range, with the upper part
being associated with several diseases. NiCo precursor,/C is expected to be used for the clinical application of DA
and UA.

4. Conclusions

In this work, we used carbon fiber as a template to grow a NiCo material with a Millepore sp. morphology. The
cobalt-nickel material shaped like Millepore sp. has a micro-nano hierarchical structure; the chemical formula is
[MCO;]x[M(OH),]y-nH,0O M = Co, Ni; x,y,n = 1-5). Besides, the template used is controllable and ultra-
long, no organics remains in the preparation process, and the NiCo precursor/C obtained can be directly used as
an electrode. Electrochemical activity experiments showed that the composite shows good redox activity
towards DA and UA with distinct, separate, individual electrochemical signals observed using DPV, the linear
range for DA and UA is 6-20 uM and 0.04—0.20 mM, respectively, the detection limits are 0.175 M and 0.027
mM, respectively, the standard deviation is 2.8% and 7.1%.
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