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ABSTRACT

Dopamine (DA) and uric acid (UA) have similar peak potentials in vivo, and it is

difficult to distinguish them by general electrode material. Here, we used a

magnetron sputtering method to sputter the ZnO seed layer on carbon fiber and

prepare ultra-long ZnO nanofibers/carbon fibers (ZnO NF/CF) electrode by

in situ hydrothermal method. As a free-standing electrode, not only electro-

chemical detection of DA and UA but also a separation of oxidation potential

peaks of DA and UA can be achieved. In addition, in the case of high concen-

tration UA (0.1 mM), ZnO NF/CF shows high sensitivity and selectivity and

shows a wide linear range for DA (4–20 lM). Meanwhile, we proposed the

electrochemical mechanism and process of DA and UA on the surface of ZnO,

which helps us to understand the simultaneous detection of DA and UA by such

electrochemical electrodes.

Introduction

Ultra-long nanofibers with large anisotropy can be

used in many fields such as composites, microelec-

tronics, separation, and biosensing [1, 2]. Among

them, ZnO nanofibers are widely used in sensors due

to their high sensitivity, low detection limit, and fast

electron transfer kinetics [3–6]. At present, electro-

spinning and sol–gel, combined with magnetron

sputtering methods, are widely used for preparing

ultra-long nanofibers, and hydrothermal growth

methods using carbon fibers as a template are also

included [7, 8]. These preparation methods result in

ordered ultra-long nanofibers to further achieve the

desired function [9, 10]. The carbon fiber here is

chemically resistant and electrically conductive and

is often used as the electrode material [11] in addition

to being used as a template. Therefore, the carbon

fiber and the nanomaterial grown thereon can be
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directly served as an unsupported electrode which

does not require a commercial electrode as support

[12–15]. Yang [3] used this type of electrode to

achieve the detection of dopamine, and Liu [16]

achieved simultaneous detection of uric acid and

ascorbic acid.

The detection of dopamine (DA) is of great signif-

icance for the diagnosis of neurological diseases such

as schizophrenia and Parkinson’s disease [17].

However, the current electrochemical detection of

DA is disturbed because uric acid (UA) and DA have

similar redox potentials in vivo [18]. The solution to

this problem is usually to use a modified electrode so

that the redox potentials of the two do not overlap. At

present, complex of cyclodextrin and graphene

[19, 20], precious metal composite [21–24], inorganic

compound boron nitride [25], semiconductor com-

posite indium tin oxides [26], graphene composite

[27, 28], and electrochemically pretreated pencil gra-

phite electrodes [29], these material modification

electrodes have achieved a distinction for the oxida-

tion–reduction potential of UA and DA.

Inspired by the above work, we sputtered ZnO

seed layer on carbon fiber and prepared ZnO

nanofibers/carbon fibers (ZnO NF/CF) free-standing

electrodes by hydrothermal method. The vision is to

use this electrode to distinguish the oxidative–re-

duction potentials of UA and DA while achieving

their simultaneous detection.

Experiment

Reagent

DA and UA were purchased from Sigma-Aldrich.

Different pH phosphate, buffer solutions (PBS) were

prepared by mixing NaH2PO4 and Na2HPO4 solu-

tions and then adjusting the pH with 0.1 M NaOH

and H3PO4. All other chemicals are of analytical

grade and are used as received. All solutions were

prepared using ultra-pure water (C 18 MX, Milli-Q,

Millipore). The DA hydrochloride and UA solutions

were prepared on the same day and stored in the

refrigerator.

Instrument

Scanning electron microscopy (SEM, JSM-6330F) and

energy-dispersive spectroscopy (EDS) were used to

measure the surface morphology, and elemental

analysis was performed on the sample. The X-ray

diffraction pattern was obtained using XRD-6000

diffracted radiation (Cu K, k = 0.15406 nm).

Electrochemical measurements of cyclic voltam-

metry (CV) and differential pulse voltammetry (DPV)

were performed using a CHI 660E workstation

(Shanghai Chenhua Instrument Corporation, China).

CV experiments were performed at a scan rate of

50 mV s-1 unless otherwise stated. The DPV experi-

ment was performed with the following parameters:

amplitude, 0.05 V; pulse width, 0.2 s; sample width,

0.0167 s; pulse period, 0.5 s; and quiet time, 2 s.

Preparation of ultra-long ZnO NF/CF
electrode

The ultra-long ZnO NF/CF free-standing electrode

was obtained in two steps, as shown in Scheme 1; the

first step is to sputter a ZnO seed layer on the surface

of the carbon fiber by RF magnetron sputtering (MSP-

30 �C). Briefly, a ZnO (5 N, 7.5 cm diameter) target

was used to deposit a ZnO layer (length and diameter

of 4 cm and 2 mm, respectively) on a carbon fiber

substrate. A gas mixture of Ar (50%) and N2 (10%)

having a total pressure of 1.0 Pa was used as a

sputtering gas. All samples were sprayed for 5 min

under conditions of 3.3 Pa, 50 sccm Ar, and 10 sccm

N2. Next, a mixed solution of zinc acetate dihydrate

(0.05 M) and hexamethylenetetramine (HMTA,

0.05 M) was prepared, and after stirring for 5 min, it

was transferred to a Teflon lined stainless steel

autoclave having a volume of 50 mL. Carbon fibers

sputtered with a ZnO seed layer were immersed in

the above-mixed solution. The mixture was

Scheme 1 Schematic diagram of ZnO NF/CF preparation and

sensor assembly.
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hydrothermally treated at 90 �C for 3 h and then to

room temperature. Finally, ultra-long ZnO NF/CF

was rinsed with deionized water and dried under

vacuum at 60 �C for 6 h and used to detect UA and

DA. The optimization of the morphologies and cross-

sections of ZnO NF/CF is shown in Support Infor-

mation Figs. S1–S4.

Results and discussion

Characterization of ultra-long ZnO NF/CF
electrode

Here, ZnO is in situ hydrothermally grown on the

carbon nanofiber to form a stand-by electrode.

Figure 1a, b shows the typical structure of ZnO NF/

CF. It can be seen that the material prepared by this

method has an ordered orientation, and the ZnO on

the surface of the carbon fiber is needle-like (Fig. 1b).

This needle-like ZnO is uniform and covers the entire

surface of each carbon fiber and is not aggregated

(Fig. 1c). Further, the single ZnO has a diameter of

about 18 nm and a length of 4.5 lm (Fig. 1d). The

components of these prepared materials are mainly

O, C, and Zn (Fig. 1e). Further component analysis is

shown in the XRD diagram (Fig. 1f), where the

2h = 26.5 and the 44� peak is assigned to (002) and

(100) of the carbon fiber. Other results show a

hexagonal wurtzite ZnO structure with no charac-

teristic peaks of other impurities, indicating that the

composition of the above nanofibers is ZnO and

carbon fiber. Therefore, these results indicate that the

nanocomposites are ZnO NF/CF. It is worth noting

that the topography of the resulting sample of Fig. 1

shows that the needle-like ZnO nanolayer is uniform

and orderly sputtered on the carbon nanofiber, which

increases the specific surface area of the electrode and

enhances the electron transport rate [3–5]. So, it can

be expected that the as-prepared materials are com-

petitive for the electrochemical applied.

Redox of UA or DA on ZnO NF/CF electrode

Figure S5 shows the cyclic voltammogram of the

different electrodes. On the bare carbon fiber elec-

trode, a weak oxidation peak of 0.4 V was observed

and there was almost no reduction peak, which may

be the hydrophobicity and chemical inertness of

carbon fibers [25]. In contrast, a large oxidation cur-

rent on the ZnO NF/CF electrode may be caused by

several factors: (1) The central carbon fiber provides a

channel for rapid electron transport; (2) the ZnO is a

graphite-like structure [26], which forms a synergistic

effect between ZnO and carbon fiber, and (3) the ZnO

microstructure on the prepared ZnO/CF material is

well dispersed, making UA easy to access conductive

carbon fiber. In addition, ZnO/carbon fiber

Figure 1 a–c Morphology with different magnifications, d length, e EDS, and f XRD of ultra-long ZnO NF/CF.
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heterojunctions result in higher electrochemical

activity [24]. For DA redox, there are similarities to

UA, except for their oxidation potential [27, 28]

(Fig. 2a). In addition, the chemical processes of UA

and DA on the surface of the electrode are all oxi-

dation processes controlled by surface diffusion

(Fig. S6).

The electrical signal detection on the ZnO NF/CF

electrode for UA or DA could be affected by electron

transfer from the ZnO surface, as well as the elec-

trolyte acidity, scan rate, and analyte concentration.

As shown in Scheme 2, in the outermost layer of the

ZnO crystal, there are many exposed zinc atoms, each

of which has one or two free unoccupied empty

orbitals [30]. Meanwhile, the valence electron orbitals

of the oxygen atoms in the phenolic hydroxyl groups

of DA and UA are sp2 hybrid, and the lone pair

electrons can be bonded to the upper orbital of Zn. In

the electrochemical oxidation process, first, DA and

UA molecules are adsorbed on the surface of the

electrode. The unshared pair of oxygen atoms in the

phenolic hydroxyl group is close to the unoccupied

orbital of the zinc atom, and then, the compound is

formed by orbital overlap. Since electrons are shared

with zinc atoms, the electron density of oxygen atoms

is lowered. The bond polarity of ‘‘OH’’ is increased,

and H? can make DA and UA molecules as free

positive ions. At the electrode voltage, the electrons

in the coordinate-like will shift and transfer to the

electrode. Then, a coordinate-like bond is broken, and

the oxygen atom of the organic compound that loses

hydrogen and two electrons will be positively

charged, and thus, the electron cloud of the oxygen

atom will deviate. For DA, the other hydrogens on

the phenolic hydroxyl group will leave as H? and the

large p bond of the benzene ring will be destroyed.

Finally, a new p bond is formed between oxygen and

carbon to produce o-benzoquinone. For UA, the

hydrogen on the imidazole ring will leave as H? and

produce a new conjugated molecule called

ninhydrin.

DPV behavior of DA in the presence of UA

DPV is used here to detect DA and UA because it has

higher sensitivity and better resolution than cyclic

voltammetry [29]. The results of different concentra-

tions of UA and DA are shown in Fig. 2a, b. Three

important characteristics that must be considered are

as follows: (1) Different oxidation potentials (0.35 V

UA and 0.2 V DA) were observed, and (2) as the

concentration increases, the oxidation current

Figure 2 DPV

electrochemical response (1)

and linear range (2) of a DA

and b UA on the ZnO NF/CF

electrode.
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increases linearly, indicating a linear trajectory of UA

and DA; (3) the oxidation current is affected by the

adsorption force. UA and DA have aromatic rings in

their molecular structure (Fig. S7), resulting in high

oxidation currents (Fig. 2a, b). In addition, the

specificity of such electrodes also shows better

acceptability. The presence of glucose, potassium

chloride, and sodium chloride did not affect the

detection of UA or DA (Fig. S8).

For the electrochemical detection of the mixture of

UA and DA, we changed the concentration of DA

therein, while the concentration of UA was constant.

As shown in Fig. 3, the DA concentration varied

between 6 and 20 lM and the UA was fixed at a

relatively large concentration of 0.1 mM. When the

DA concentration increases, the oxidation peak cur-

rent of DA also increases, but the oxidation peak

current of UA is always constant. The peak potential

of DA is 0.19, and the peak potential of UA is 0.38,

which separates DA and UA well. The DA detection

here has a linear range of 6–20 lM and a detection

limit of * 0.402 lM, which is even better than some

complex sensor results (see Table 1 for more infor-

mation). These results also indicate that the ZnO NF/

CF electrode can be used for the quantitative detec-

tion of DA in the coexistence of UA. Therefore, the

ZnO NF/CF electrode is also a promising candidate

for the selective determination of DA in the presence

of UA.

Conclusion

In summary, the ZnO seed layer was successfully

sputtered on carbon fiber by magnetron sputtering to

prepare ultra-long ZnO NF/CF and directly used as a

free-standing electrode. The electrode was

ZnO

H H+

+

M

M

M

ZnO

ZnO

-M DA

UA

M

M

Oxygen atom Unoccupied orbital of zinc atom Electron

Scheme 2 Proposed

mechanism of the oxidation

process of DA and UA on the

surface of ZnO NF/CF.

Figure 3 a DPV of DA with

different concentrations

containing 0.1 mM UA. b The

corresponding plots of peak

current versus the

concentration of DA.
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characterized, and the electrochemical processes of

UA and DA on the electrode surface were discussed.

The DPV method can be used to detect sensitive DA

or UA, and the detection of DA can be realized under

the high concentration of UA (0.1 mM). The DA

detection here has a linear range of 6–20 lM and a

detection limit of * 0.402 lM. These results indicate

that this electrode can perform effective electro-

chemical oxidation of UA and DA and the resolution

of oxidation peaks and can be used as an alternative

for the simultaneous detection of UA and DA.
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