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N2O is an important greenhouse gas and the primary stratospheric
ozone depleting substance. Its deleterious effects on the environ-
ment have prompted appeals to regulate emissions from agricul-
ture, which represents the primary anthropogenic source in the
global N2O budget. Successful implementation of mitigation strat-
egies requires robust bottom-up inventories that are based on
emission factors (EFs), simulation models, or a combination of
the two. Top-down emission estimates, based on tall-tower and
aircraft observations, indicate that bottom-up inventories severely
underestimate regional and continental scale N2O emissions, im-
plying that EFs may be biased low. Here, we measured N2O emis-
sions from streams within the US Corn Belt using a chamber-based
approach and analyzed the data as a function of Strahler stream
order (S). N2O fluxes from headwater streams often exceeded
29 nmol N2O-N m−2·s−1 and decreased exponentially as a function
of S. This relation was used to scale up riverine emissions and to
assess the differences between bottom-up and top-down emission
inventories at the local to regional scale. We found that the In-
tergovernmental Panel on Climate Change (IPCC) indirect EF for
rivers (EF5r) is underestimated up to ninefold in southern Minne-
sota, which translates to a total tier 1 agricultural underestimation
of N2O emissions by 40%. We show that accounting for zero-order
streams as potential N2O hotspots can more than double the ag-
ricultural budget. Applying the same analysis to the US Corn Belt
demonstrates that the IPCC EF5r underestimation explains the
large differences observed between top-down and bottom-up
emission estimates.

aquatic nitrous oxide fluxes | IPCC emission factors | river emission
hotspots | regional emission upscaling

N2O is projected to remain the dominant stratospheric ozone-
depleting substance of the 21st century (1) and is a powerful

greenhouse gas (GHG) that currently accounts for about 6% of
the net radiative forcing associated with long-lived anthropo-
genic GHGs (2). The detrimental environmental impacts of N2O
have stimulated appeals to regulate emissions from agricultural
lands (1, 3), which account for nearly 80% of the global an-
thropogenic N2O budget (4, 5). The successful regulation and
mitigation of N2O emissions requires a sound understanding of
the direct and indirect emission processes and reduced un-
certainty regarding the emission factors (EFs) (6).
The Intergovernmental Panel on Climate Change (IPCC) tier 1

approach uses EFs to provide first-order approximations of annual
N2O emissions based on mechanistic and empirical information
that have been constrained by field studies. These EFs are widely
used in bottom-up inventories such as the Emission Database for
Global Atmospheric Research (EDGAR) (7) and the Global
Emissions Initiative (GEIA) (8). These inventories are essential
tools for tracking country specific emission trends, assessing
thresholds for international treaties, and evaluating the impacts of
mitigation policies. Recent independent top-down estimates note
large discrepancies with these bottom-up inventories.

Tall-tower and aircraft-based top-down studies use atmospheric
concentration data to estimate landscape N2O fluxes. Several
studies using these approaches demonstrate that bottom-up in-
ventories underestimate N2O emissions by up to ninefold in the
Midwest US Corn Belt (9–12), implying that some EFs are too
small. An important problem, therefore, is determining which
EFs are biased low and how to reduce their uncertainty.
Bottom-up N2O emission inventories include direct and in-

direct emission pathways. Direct emissions describe the loss of
N2O produced in soils by microbial processes (e.g., nitrification
and denitrification). This source is arguably well constrained as a
consequence of more than 1,000 chamber-based emission studies
(6, 13). Plant N2O fluxes, although neglected in direct emissions
inventories, appear to be negligible (10). The relatively low di-
rect emission uncertainty range (0.4–3.8 Tg N·y−1) (14) suggests
that this EF (0.003–0.03) (15) is well constrained.
Indirect emissions represent the aggregate of N2O production

from leaching and runoff, human sewage, and atmospheric de-
position of reactive nitrogen. Global indirect emission estimates
range from 0.23 to 11.9 Tg N·y−1 (16) and represent nearly two
thirds of the uncertainty in the total global N2O budget (14). In fact,
the EF for leaching and runoff (IPCC emission factor: EF5), which
includes emissions from groundwater (EF5g), rivers (EF5r), and
estuaries (EF5e), is the single largest source of uncertainty in the
bottom-up inventory (14). In the 2006 IPCC Emission Guidelines
report, the EF5 value was reduced from 0.025 to 0.0075 by reducing
both the EF5g and EF5r to 0.0025 in response to two studies from
New Zealand and the United Kingdom (15). However, recent
studies (17–20) suggesting riverine N2O loss is underestimated by up
to threefold notably contradict the EF5r reduction.

Significance

N2O emissions from riverine systems are poorly constrained,
giving rise to highly uncertain indirect emission factors that are
used in bottom-up inventories. Using a non–steady-state flow-
through chamber system, N2O fluxes were measured across a
stream order gradient within the US Corn Belt. The results
show that N2O emissions scale with the Strahler stream order.
This information was used to estimate riverine emissions at the
local and regional scales and demonstrates that previous bot-
tom-up inventories based on the Intergovernmental Panel on
Climate Change default values have significantly underestimated
these indirect emissions.
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Uncertainty in the EF5r can be attributed to a scarcity of
studies (21, 22), poorly constrained water-air gaseous exchange
relationships (23, 24), and high variability in river morphology
(25, 26). Further, the EF5r assumes a linear relation between
nitrate in water and N2O emissions (14), the validity of which is
the subject of considerable debate (27–30). Finally, N2O fluxes
derived from simple gas exchange models have been shown to
underestimate the flux if stream channel hydraulics (i.e., stream
flow velocity) are ignored (31), highlighting that stream chem-
istry alone is not an accurate predictor of N2O fluxes.
We posit that the indirect N2O fluxes in agricultural land-

scapes are highly dependent on stream hierarchy, which is
semiquantitatively represented with the Strahler stream order
(S), a numerical classification system. Here, we demonstrate that
with detailed knowledge of S, N2O fluxes can be scaled up to the
region and help to resolve the discrepancy between top-down
and bottom-up N2O emission estimates in the US Corn Belt.

Results and Discussion
N2O fluxes in southeastern Minnesota were measured in streams
of varying S over a 2-y period. A total of 19 stream systems,
representing nine stream orders, were sampled. An exponential
function was used to describe the relationship between observed
N2O fluxes (F, nmol N2O-N·m−2·s−1) and S

F = b0 expð−b1pSÞ, [1]

where b0 = 34 ± 10.2 (95% CI) and b1 = 0.73 ± 0.2, with R2 =
0.95 and 0.58 for binned (n = 9) and raw data (n = 200), re-
spectively (Fig. 1). Fluxes ranged from below the chamber system
detection limit of 0.018 nmol N2O-N·m−2·s−1 (i.e., for the Mis-
sissippi River; S = 9) to a maximum observed flux of 34.5 nmol
N2O-N·m−2·s−1 in a headwater stream (S = 1). A Kruskal–Wallis
significance test revealed a significant mean rank difference (P <
0.05) in fluxes for headwater streams vs. all other stream orders.
Further, there was a significant rank difference between fifth-
and ninth-order streams, whereas there was no rank difference
detected in second- to fifth-order streams. The differences were
greatest when testing nonsequential stream orders.
We hypothesize that the exponential decline in N2O flux is the

result of both weakened concentration gradient and lower piston

velocities (k) in higher-order streams. Riverine N2O fluxes are a
product of the concentration gradient between the surface water
and the overlying atmosphere and a physical gas transfer co-
efficient (32). We propose two possible mechanisms underlying
the emergent pattern shown in Fig. 1 including decreased in situ
N2O production and loading and decreased gas exchange rates.

Mechanism 1.Headwater streams form from surface and subsurface
runoff that, in regions with a high density of row crop agriculture,
have high nitrate and ammonium loads, and as a consequence,
∼45–50% of a watershed’s inorganic nitrogen transport can occur in
these systems (33, 34). Nitrogen is rapidly transformed via nitrifi-
cation and removed through denitrification (35) in headwater
streams (33), and these processes can quickly produce a surplus of
N2O in the water column. However, the average first-order rate of
nitrogen loss within stream channels declines by as much as 90%
down the stream order continuum (36). Therefore, production
potential declines as stream order increases. Accordingly, we ob-
served a decline in surface water N2O concentrations from super-
saturated (>1,000%) in second-order streams to near equilibrium
with atmospheric N2O in fourth-order streams. Groundwater dis-
solved gas inputs are an additional N2O source and are most
impactful in low flow headwater systems (37). However, ground-
water loading has less of an effect on stream water chemistry with
rising stream order (i.e., due to the water volume dilution effect)
(37). Collectively, with increasing stream order, N2O production
potential and loading progressively decline, which could account for
the pattern shown in Fig. 1.

Mechanism 2. Exchange across the water-atmosphere interface of
supersaturated gases is governed by k, which describes the tur-
bulent nature of the stream. An inverse relationship between
kCO2 and S has been observed (38–40), and as a consequence,
the highest kCO2 values are frequently observed in headwater
streams (38, 40–42). The same relationship after adjusting for
the Schmidt number should be applicable to N2O, implying that
kN2O increases with declining stream order. Localized areas with
high k values (i.e., riffles) have been shown to be strong emission
sources (31) if streams are supersaturated (e.g., mechanism 1).
However, if the stream is not supersaturated, a high k value
alone cannot generate a large flux. Further, a lower k implies a
longer total residence time (age) and therefore a greater prob-
ability of N2O reacting with nitrous oxide reductase (nos), the
enzyme that catalyzes the final step in the denitrification reaction
sequence: the reduction of N2O to N2 (43). Although this has not
been documented in river systems, this potential mechanism
merits further research to determine its importance and its
ability to weaken the water-atmosphere N2O concentration
gradient. We posit that these two mechanisms, individually or
combined, account for the relationship observed in Fig. 1 and
require further study to elucidate their relative importance.
In our study, the variability of N2O flux (i.e., the SD) scaled

with stream order, leading to a tightly constrained relation for
high order systems (Fig. 1). These observations imply a robust
constraint on high-order (fifth-order and higher) emissions and
that this pattern could be applied to similar systems (44). Con-
versely, much larger uncertainty in low-ordered systems (45, 46)
exists, indicating that caution must be taken before generalizing
our scaling function outside of the US Corn Belt. Headwater
streams displayed the greatest uncertainty and their high vari-
ability has also been noted in CO2 evasion work (41). Low-order
streams receive tile drainage outflow and groundwater from
springs giving rise to localized “hotspots” of N2O loss (45),
similar to those seen in methane evasion work (41).
To test the appropriateness of the default IPCC EF5r value, we

used Eq. 1 to up-scale emissions within the observed concentration
footprint (50-km radius) of our tall-tower N2O flux station (9).
Land use in this study area consists of 70% crops and pasture, 14%

Fig. 1. The relation between N2O flux and the Strahler stream order in south-
eastern Minnesota. The black line represents the best fit of an exponential
function to the mean flux values measured at each stream order. Red lines rep-
resent the 95% CI of the model fit, and error bars indicate 1 SD from the mean.
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mixed vegetation, 11% forest, 3% developed, and 2% open water
and is representative of the US Corn Belt. Streams in the area
represent only a small fraction (0.16%) of the total surface area.
Using default IPCC EFs for direct and indirect emissions, we
provide a conservative estimate of the local agricultural N2O
budget in addition to our up-scaled riverine emissions.
Whole-river emissions are the product of our scaling function

and river area over a predicted ice-free period. We estimated the
annual riverine N2O loss by coupling Eq. 1 with detailed geo-
spatial datasets on stream length and width. Headwater streams
(S = 1) were the strongest sources, emitting 60% of the riverine
budget. The remaining streams in the study area (S = 2–5)
contributed 14%, 8%, 10%, and 8% to the up-scaled riverine
emission budget, respectively. This disproportionate flux distri-
bution was a result of a threefold greater mean flux density from
headwater streams (17.1 nmol N2O-N·m−2·s−1) than second-or-
der streams (5.7 nmol N2O-N·m−2·s−1).
Using the IPCC tier 1 methodology (15), the total agricultural

(direct + indirect) N2O emissions from the tall-tower footprint
were 0.2 Gg N2O-N·y−1, which corresponds to a flux density of
0.25 (0.08–0.6) nmol N2O-N·m−2·s−1. Indirect and direct sources
contributed 22% and 78%, respectively, to the tier 1 budget.
Here, the default EF5r predicts that rivers emitted 0.01 Gg N2O-
N·y−1, which represents just over 5% of the total N2O-N emis-
sions. Our scaling method predicted a riverine source of 0.09
(0.04–0.18) Gg N2O-N·y−1 (Fig. 2A), an estimate that is nine
times greater than the source predicted by the default EF5r,
signaling a significant bottom-up bias in the EF5r. Replacing the
EF5r with our scaling function suggests that the total tier 1 bot-
tom-up agricultural emissions have been underestimated by

40%. Accounting for this potential bias increases the predicted
bottom-up flux density within the tall-tower source footprint
to 0.36 nmol N2O-N·m−2·s−1 (Fig. 2C). This estimate is in ex-
cellent agreement with the top-down tall-tower measured en-
semble flux of 0.35 (0.3–0.4) nmol N2O-N·m−2·s−1 (9), indicating
that top-down and bottom-up budgets can be reconciled by ap-
plying our stream order scaling function. Our study suggests that
an appropriate EF5r for the tall-tower source footprint should be
closer to 2%, assuming the average application rate of nitrogen
fertilizer (88.8 kg N·ha−1) (47), which is in agreement with a
recent independent investigation (18).
Based on the tier 1 methodology, we estimated the agricultural

N2O budget of the US Corn Belt at 58 (15–256) Gg N2O-N·y−1,
of which 6% or 3.5 Gg N2O-N·y−1 emanates from rivers (Fig.
2B). In this region, watersheds with high agricultural land use
(>40%) occupy 93 million ha (58 million ha under active row-
crop cultivation). Applying Eq. 1 to these watersheds and using
river area data, we obtained a riverine emission of 19.5 (9.3–
41.2) Gg N2O-N·y−1. Our findings suggest that riverine N2O
emissions are underestimated by at least 16 Gg N2O-N·y−1 for
the Corn Belt and on average by 29 kg N2O-N·km−2·y−1 in wa-
tersheds whose cropland fractions are greater than 40% (Fig. 3).
Including this source results in a 27% increase in the total tier 1
emission estimate from 58 to 75 Gg N2O-N·y−1 (Fig. 2B). These
findings indicate that a more appropriate regional EF5r is closer
to 1.5% (0.7–3%) if the average nitrogen inputs, agricultural
coverage (48), and runoff scaling factor (15) are used.
It is important to note that our revised EF5r may not be

applicable to areas that are nitrogen limited. Our conservative
land use threshold of >40% cropland was chosen because the

Fig. 2. Results from upscaling N2O emissions. (A) A comparison of local indirect N2O-N sources from default IPCC EFs and our scaling method. (B) Total US
Corn Belt emissions from the three methods. (C) The flux densities from the tall-tower source footprint for each method.
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corn and soybean systems prevalent in the US Corn Belt in-
directly identify areas of high nitrogen loading. Although average
nitrogen application rates vary, from 1994 to 2001, the average
applied to all arable lands within the US Corn Belt was 48 kg
N·ha−1 (49). As such, we propose that agriculturally dominated
watersheds receiving rates greater than 48 kg N·ha−1 will be
subject to similar indirect emissions and emission factors as ob-
served in this study. We believe that the majority of the annual
riverine N2O budget will originate from those watersheds and
that their total area globally exceeds 235 million ha. Following
the United States (93 million ha), the largest regions meeting
these criteria are China (69 million ha), Europe (43 million ha),
and India (30 million ha). The remaining watersheds are likely to
be small N2O sources, and the default 2006 IPCC EF5r value
should be appropriate for these cases (50).
The application of our methodology to the global scale is

limited by two main factors. First, the scaling relation described
in Fig. 1 is likely applicable to watersheds that are dominated by
cropland systems with nitrogen inputs greater than 48 kg N·ha−1.
Second, our stream order width was estimated using methodol-
ogies limited to the contiguous United States and Africa (51). At
this time, we are unaware of an existing accurate global river
width dataset, and this represents an important limitation for
application of our method to other regions. We believe this is an
important research need, especially in countries with significant
agricultural production including corn (e.g., China, India, Brazil,
and others).
The above analyses did not consider the role of fine-scale

drainage features. Zero-order streams, or microflow stream
channels, extend upland of headwater streams, are highly epi-
sodic, and are likely hot spots of nitrogen processing (52). Zero-
order stream systems form at the intersection of terrestrial and
aquatic environments. However, because of their episodic nature
and low spatial coverage, N2O flux observations are severely
lacking. Advancements in Light Detection and Ranging (LiDAR)
remote sensing have made it possible to identify episodic microflow
paths that may activate following snowmelt and precipitation events.
The microflow paths are produced from high resolution (1 m) el-
evation maps that predict surface water movement. From these
data, zero-order streams represent the most common stream order.
We estimate that their length is 33 times that of first-order streams
in the tall-tower footprint. By extrapolating Eq. 1 to include zero-
order streams, we suggest that they exert a significant influence on
the N2O budget by increasing the local emissions to 0.41 Gg N2O-
N·y−1 in the tall-tower footprint, or 101% greater than the default
IPCC estimate. Scaling zero-order streams to the Corn Belt in-
creases indirect emissions to 82 Gg N2O-N·y−1, whereas the total
emissions double to 129 Gg N2O-N·y−1. However, the uncertainty
in N2O emissions related to zero-order streams is large because we
lack direct observational data, the reactivation timing is uncertain,

and the microscale watershed threshold necessary to form a zero-
order stream is highly variable. Regardless, there appears to be
growing evidence of their importance in closing the gap between
bottom-up and top-down emission estimates for the US Corn Belt.

Materials and Methods
N2O Flux Sampling. N2O fluxes were measured in the field using a flow-
through non–steady-state chamber system adapted for deployment in rivers.
The floating chamber consisted of an aluminum lid with a pressure equili-
bration vent buoyed by foam insulation and covered with reflective mate-
rial. The chamber enclosed a surface area of 0.145 m2 with a headspace
volume of ∼0.0147 m3.

Headspace gas was pulled through a Teledyne gas filter correlation N2O
analyzer (Model M320EU2; Teledyne Instruments), and the dry mole fraction
was recorded at a sampling frequency of 1 Hz using a data-logger (model
23X; Campbell Scientific). The analyzer was powered in the field by deep
cycle 12 V batteries wired in parallel to a DC-to-AC inverter. The chamber
system has a minimum detectable flux of 0.028 nmol N2O·m−2·s−1 (53). The
analyzer was calibrated at the beginning of the season using an analytical
grade standard and zeroed two times per month using N2 gas. The con-
centration precision of the analyzer was 1.5 nmol·mol−1, and the flux mea-
surement precision was 0.003 nmol·m−2·s−1 (53).

The raw data were processed in Matlab (Matlab, Version R2012a; Math-
works). Fluxes were calculated according to

F =
ρVΔ
A

, [2]

where ρ (mol·m−3) is the molar density of dry air, A (m2) is the surface area
enclosed by the chamber, V (m3) is the chamber volume, and Δ (nmol
N2O·mol−1·s−1) is the rate of change of N2O concentration in the chamber
headspace determined from linear regression (53). Before calculating the
chamber N2O fluxes, a wavelet denoising technique was applied to the raw
concentration data. This technique reduced the effect of instrument noise
and improved the signal to noise ratio (53). We eliminated all chamber flux
data when the linear regression R2 value was less than 0.9.

Upscaling. Nonlinear regression analysis was performed using the “fitnlm”

function in Matlab. Local stream order data were downloaded from the
Minnesota Department of Natural Resources. Mean North American stream
order width (51) was used to generate stream area. Stream order areal es-
timates were applied to our nonlinear function to predict river emissions
over a 214-d period (Day of Year 91–305).

The extent of the Corn Belt is subjective and lacks boundaries. Our defi-
nition was determined by selecting HUC12 subwatersheds with greater than
40% agriculture from 13 states in the Midwest (North Dakota, South Dakota,
Nebraska, Kansas, Minnesota, Iowa, Missouri, Arkansas, Wisconsin, Illinois,
Ohio, Indiana, and Michigan). Regional stream order data (NHDPlus, V.2;
Horizon Systems Corp.) were used in our nonlinear model. The regional
dataset is at a lower resolution than the local stream order and as a con-
sequence underestimated stream length. A comparison ofMinnesota streams
determined a scaling factor (1.4) was appropriate to apply to the regional
data to correct for this underestimation.

Default tier 1 IPCC methodologies were used to estimate N2O emissions
(15). This budget included direct emissions from soils from synthetic and
organic nitrogen application, indirect emissions from the volatilization of
synthetic and organic fertilizer, rivers, and groundwater. We did not account
for emissions from natural systems, industry, grazing livestock, organic soils,
crop residues, and legumes. Annual rates of synthetic and organic fertilizer
application were used.

Zero-order streams were estimated from LiDAR data provided by the
Minnesota Geospatial InformationOffice thatwas processed usingArcMap. A
threshold of 250 m2 was set before a stream would “activate.”We assumed a
period of 2 mo of active emissions that would include spring thaw and pe-
riodic precipitation events. Zero-order width was estimated using a re-
gression equation from North American stream width data (51).
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Fig. 3. The first-order default EF5r underestimation from the Corn Belt re-
gion. The bias is defined as the difference between IPCC EF5r emissions and
the results from stream order scaling.
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Fig. S1. Photograph and diagram of the system used in this study to sample N2O flux.
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