Eddy-covariance and chamber measured greenhouse gas emissions from a commercial corn field

Junming Wang a*, Wangjunming@hotmail.com, 615 525 3927
Dafeng Hui a, Tigist Jima a, Sudeep Bhattarai a, Sam Dennis a, Christine Stockert b, Dave Smart b, Ted Sammis c, and David Miller d

a University of Illinois at Urbana-Champaign, USA.
b University of California, Davis
c New Mexico State University
d University of Connecticut
Introduction

- The general goal of the project is to:
 Develop an online tool to schedule irrigation and fertilization to optimize yields and mitigate N\textsubscript{2}O emissions
- Only recently has a high-frequency N\textsubscript{2}O sensor (10 Hz) become available that makes it possible to use Eddy Covariance technique.
Eddy Covariance: Emissions of Greenhouse Gases

N_2O (0.3-3,000 ppb), CO, H$_2$O

QCL-TILDAS-76 Ambient Air Monitor
N_2O-N flux affected by rainfall and fertilization
Summary

- Field-scale N$_2$O flux measurements using EC are reasonable compared with chamber measurements.
- N$_2$O-N emission from corn field:
 29 g/ha/day (3.5 kg/ha/120 days)