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Abstract Urban areas are global methane (CH4) hotspots. Yet large uncertainties still remain for the CH4

budget of these domains. The Yangtze River Delta (YRD), China, is one of the world's most densely
populated regions where a large number of cities are located. To estimate anthropogenic CH4 emissions in
YRD, we conducted simultaneous atmospheric CH4 and CO2 mixing ratio measurements from June 2010
to April 2011. By combining these measurements with theWeather Research and Forecasting and Stochastic
Time‐Inverted Lagrangian Transport models and a priori Emission Database for Global Atmospheric
Research emission inventories, we applied three “top‐down” approaches to constrain anthropogenic CH4

emissions. These three approaches included multiplicative scaling factors, flux ratio, and scale factor
Bayesian inversion. The posteriori CH4 flux density estimated from the three approaches showed high
consistency and were 36.32 (±9.17), 35.66 (±2.92), and 36.03(±14.25) nmol·m−2·s−1, respectively, for the
duration of the study period (November 2010 to April 2011). The total annual anthropogenic CH4 emission
was 6.52(±1.59) Tg for the YRD region based on the average of these three approaches. Our emission
estimates were 30.2(±17.6)%, 31.5 (±5.6)%, and 30.8 (±27.4)% lower than the a priori Emission Database for
Global Atmospheric Research v432 emission inventory estimate. The scale factor Bayesian inversion results
indicate that the overestimate was mainly caused by two source categories including fuel exploitation
and agricultural soil emissions (rice cultivation). The posteriori flux densities for agricultural soil and fuel
exploitation were 10.68 and 6.34 nmol·m−2·s−1, respectively, and were 47.8% and 29.2% lower than the a
priori inventory. Agricultural soil was the largest source contribution and accounted for 29.6% of the YRD
CH4 budget during the study period.

1. Introduction

Atmospheric methane (CH4) mixing ratios reflect the balance between CH4 sinks and sources. Globally
observed CH4 mixing ratios showed a general stabilization between 1995 and 2006, with an increasing trend
since 2007 (Kirschke et al., 2013; Nisbet et al., 2014). These trends suggest a large increase in anthropogenic
CH4 emissions or climate‐induced natural emissions from global wetlands (Dlugokencky et al., 2009;
Kirschke et al., 2013; IPCC 2013; Nisbet et al., 2016). There is considerable debate regarding the exact causal
mechanisms, which highlights that CH4 sources are still not fully understood and have relatively large
uncertainties. Estimates of global CH4 emissions vary considerably (542 to 852 Tg CH4/year) with
Intergovernmental Panel on Climate Change (IPCC)‐based estimates generally much larger than that esti-
mated from direct observations (or inversions) from atmospheric measurements (526 to 569 Tg CH4/year;
Kirschke et al., 2013; Nisbet et al., 2014, 2016, 2019). To better understand the global CH4 cycle, CH4 emis-
sions at regional and subregional scales (102–106 km2) need to be better monitored and constrained.
Approximately 50% to 65% of CH4 emissions come from anthropogenic sources such as fossil fuel exploita-
tion (e.g., gas flaring and venting during coal mining, oil/gas production, and distribution losses by transmis-
sion), agricultural sector (e.g., agricultural soil (AGS), agricultural waste burning (AWB), enteric
fermentation, and manure management), and landfills (waste), with fossil fuels and landfills accounting
for about 52% of the total anthropogenic CH4 emissions (IPCC 2013).
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Urban areas are considered hotspots for greenhouse gas (GHG) emissions. Urban carbon dioxide (CO2)
emissions account for over 70% of fuel‐related CO2 emissions, and urban CH4 emissions account for about
25% of global CH4 emissions (IPCC 2013). Despite the disproportionate role that cities play in the global
carbon cycle, large uncertainties persist at the regional to city scales (Mitchell et al., 2018; Wu et al.,
2018). Improved knowledge of CH4 emissions from urban areas is of high priority in improving our under-
standing of the global CH4 cycle and for developing practical mitigation strategies (Hopkins et al., 2016;
Townsend‐Small et al., 2012; Wunch et al., 2016).

CH4 mixing ratios are projected to increase substantially (6.9 ppb/year) assuming the same observed trend
between 2007 and 2015 (Saunois et al., 2016). Most of this increase will be associated with anthropogenic
emissions from developing countries (Duren & Miller, 2012). Based on high‐resolution emission mapping,
significant differences in GHG emissions between urban and rural areas have been identified and indicate
that urbanization in developing countries are an important factor in driving increased GHG emissions
(Wang et al., 2013). With the global urban population expected to double by 2050, CH4 emissions are
expected to undergo large increases in the absence of any mitigation strategies.

Due to increasing fossil fuel demand related to economic growth and residential needs, developing countries
account for a large portion of this urbanization (Duren & Miller, 2012; International Energy Agency, 2008).
Both economic growth and urbanization can potentially enhance CH4 emissions from urban regions. China
is the largest developing country in the world, with an actual economic growth rate of about 6% per year
(Rosenzweig et al., 2010; Wolf et al., 2011). A recent study in China showed that the annual total anthropo-
genic CH4 emission was 24.4 (18.6–30.5) Tg with the main contributions including rice cultivation (46%),
livestock (25%), and coal exploitation (14%) for the year 1980. By 2010, these emissions had doubled to
44.9 (36.6–56.4) Tg with major changes in the relative contributions including coal exploitation (40%), live-
stock (25%), and rice cultivation (16%; Peng et al., 2016). To support urban carbon management strategies,
robust verifications of anthropogenic emissions are needed and measurement systems are being deployed
to monitor anthropogenic CH4 emissions from representative megacities in China (Shen et al., 2014).

The Yangtze River Delta area (hereafter YRD) geographically includes Shanghai municipality, and the three
provinces of Anhui, Zhejiang, and Jiangsu. It has a population of about 190 million and is ranked as one of
the most developed and densest urbanized regions in the world (C. Hu, Liu, et al., 2018). The urban land
fraction in YRD is greater than 10% and exceeds the global average of 2.4% (C. Hu, Liu, et al., 2018; Xu
et al., 2017). As summarized for the year 2014, the YRD area accounted for 11% of the national population
and 18.5% of China's gross domestic product (GDP; C. Hu, Liu, et al., 2018). Anhui province is among the
highest coal mining CH4‐emitting provinces in China (Miller et al., 2019). The rice cultivation area in
YRD also accounts for 18% of the total plant area in China (National Bureau of Statistics of China, 2010)
and has potential to be a large CH4 source. At the regional scale, the CH4 emission sources from rural areas
can also be a significant contributor to urban regions. For instance, the Four Corners region in the United
States is dominated by fossil fuel emissions, while California's central Valley found that its CH4 sources were
dominated by agricultural emissions (Kort et al., 2014). Based on the IPCC methodology, previous research
concluded that rice cultivation, coal mining, and landfills accounted for 42.1%, 26.4%, and 10.8%, respec-
tively, of the total CH4 emissions in YRD for 2009 (Shen et al., 2014). These results differ considerably com-
pared to country‐level emission estimates for China (Peng et al., 2016) and highlight the large variability and
uncertainty in regional estimates. The YRD, therefore, represents a great opportunity for improving our
understanding of urban GHG emissions and developing mitigation strategies.

Both bottom‐up and top‐down methods have been applied to estimate GHG emissions in China. Bottom‐up
approaches are typically based on the upscaling of inventory statistics and associated emission factors (EFs)
obtained at relatively small spatial scales (i.e., chamber to field scales). Top‐down approaches are typically
based on atmospheric measurements and inverse modeling to constrain regional scale emissions (see details
in Kirschke et al., 2013). Previous studies on anthropogenic CH4 emissions have mostly been based on the
IPCC bottom‐up methodology. Peng et al. (2016) started an independent measurement‐based survey of
CH4 emissions in China by using province‐level EFs. They concluded that the national total emission was
44.9 Tg (range 36.6 to 56.4 Tg) in 2010. Their emission estimate is 36% lower than the Emission Database
for Global Atmospheric Research (EDGAR42) inventory and 18% lower than that estimated by using the
IPCC default EFs. By using Chinese economic data and the embodiment analysis, Zhang and Chen (2010)
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reported that the total anthropogenic CH4 emission was 39.6 Tg in 2007 for mainland China. Their analyses
showed that agricultural and coal mining emissions were the most important sources, whereas emissions
derived fromEDGAR42 suggested a total emission of 73 Tg. These different studies highlight the large uncer-
tainties that can propagate depending on the quality of the inventory and activity data (magnitude of activity
and various carbon input and consumption processes that result in CH4 emissions) when applying the
IPCC approach.

There are large uncertainties associated with a number of source categories in China. A recent study esti-
mated coal mining CH4 EFs at the provincial level across China, which accounts for >50% of the global coal
mining CH4 emissions. Their study found that EFs are highly variable from 0.74 m3/t (m3 CH4 per ton coal)
to 36 m3/t (Zhu et al., 2017). Methane emissions from landfills also have large uncertainties with projected
emissions ranging from 1.80 to 2.35 Mt by 2030 (Cai et al., 2018). Aquaculture in China represents an impor-
tant source of CH4, accounting for 60% of the world total inland aquaculture area in 2012. Nearly half of
China's aquaculture was converted from rice paddies to meet the demands of aquaculture production
(Food and Agricultural Organization (FAO), 2014). Field experiments conducted in the YRD have shown
that land use change can alter methane emissions. For instance, conversion from rice paddies to aquaculture
caused methane emissions to increase by 48% in the YRD (Liu et al., 2016). Therefore, large biases can occur
in bottom‐up estimates without state‐of‐the‐art land use information. Further, N. Hu et al. (2018) found that
CH4 emissions from natural gas vehicles were underestimated by eightfold in China by the IPCC inventory
methodology. These studies indicate large biases for the IPCC default EFs for different regions and categories
and also for the activity data used in calculating CH4 emissions (N. Hu et al., 2018; Peng et al., 2016).

Top‐down methods have already been widely used in estimating CH4 emissions in other countries. These
approaches include remote sensing and atmospheric measurement techniques and have shown great poten-
tial for retrieving and evaluating anthropogenic GHG emissions (Gurney et al., 2017; Hedelius et al., 2018;
Miller et al., 2013; Pison et al., 2018). Based on the theory that “excess” GHG gas (i.e., enhancement) above
“background” values can reflect the influence of both local emissions and meteorological conditions, top‐
down atmospheric techniques combine high‐precision mixing ratio observations and transport modeling
to constrain bottom‐up emission estimates from urban regions (Mitchell et al., 2018; Salmon et al., 2018;
Sargent et al., 2018). Townsend‐Small et al. (2012) found that fugitive emissions of CH4 in California,
USA, were underestimated by more than ~50% based on isotopic constraints and the difference between
their top‐down estimates compared with with a priori inventories for California (Hopkins et al., 2016;
Wong et al., 2015; Wunch et al., 2016). By applying a Bayesian inversion method, Chen et al. (2018) also
reported that CH4 emissions from oil/gas sources and livestock were underestimated by 1.3 and 1.8 times,
respectively, for the Upper Midwestern United States. These results indicate that relatively large uncertainty
still exist for anthropogenic CH4 emissions at regional scales, which can be attributed to both uncertainties
in activity data and EFs.

These top‐down methods have rarely been applied in China and the YRD region. Thompson et al. (2015)
employed the Bayesian inversion method to constrain CH4 emissions in East Asia. They found that the total
emissions for China were overestimated by the a priori estimations (EDGAR 42) by about 29% between 2000
and 2011. By combining aircraft observations of the Asian outflow (over the NW Pacific) with atmospheric
transport modeling, Xiao et al. (2004) evaluated the model simulated concentration relationship of CH4:CO
with observations and concluded that a priori CH4 emissions in east Asia should be increased by about 40%
tomatch the observations. Jiang et al. (2014) constrained CO2 fluxes in China by using aircraft CO2measure-
ments, and their results reduced CO2 flux uncertainty to 2–12%. Tohjima et al. (2014) argued that the atmo-
spheric ΔCH4: ΔCO2 enhancement slope is equal to the emission ratio of CH4 and CO2 and found that
annual anthropogenic CH4 (excluding rice cultivation) emissions was 39 ± 7 Tg through 1998 to 2002. A
recent study based on Greenhouse gases Observing SATellite observations was used to constrain CH4 emis-
sions in China. This study found that emissions showed an increasing trend over the period 2010 to 2015,
with the emission magnitude around 20% smaller than that estimated from the EDGAR v4.3.1 inventory
(Miller et al., 2019). Most of these previous top‐down studies tried to constrain CH4 emissions in China by
using a single scaling factor (SF). However, as noted above, the uncertainties and SFs can vary dramatically
for different regions (N. Hu et al., 2018; Peng et al., 2016). To the best of our knowledge, only Shen et al.
(2014) have estimated CH4 emissions within the YRD region. They used both the bottom‐up IPCC
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methodology and top‐down approaches using the concentration ratio between CH4 and CO2 as a constraint.
They concluded that CH4 emissions from anthropogenic sources (excluding rice cultivation), rice cultiva-
tion, and natural wetland were 2.85(±22%), 2.22 (±22%), and 0.19(±20%) Gg in YRD for 2009. However,
their work did not explicitly link the atmospheric measurements with concentration footprint modeling
or Bayesian inversion methods to help constrain individual sources. The advantage of concentration source
footprint modeling and Bayesian inversion source partitioning is the ability to provide constraints on a vari-
ety of source categories simultaneously.

The YRD region contains many strong anthropogenic CH4 sources (Wang et al., 2009; Yan et al., 2003)
including landfills, fossil‐fuel related combustion, coal mining, and agricultural emissions. Quantifying
GHG emissions for the region is needed to fill knowledge gaps related to GHG emissions and hotspots within
the region. We conducted atmospheric concentration observations for both CH4 and CO2, where the CO2

was used as a tracer to help constrain CH4 emissions. The objectives of this study were, therefore, to (1) pro-
vide three top‐down approaches to constrain anthropogenic CH4 emissions for the YRD region, (2) reconcile
the differences between bottom‐up and top‐down estimates of anthropogenic CH4 emissions, and (3) iden-
tify the main CH4 sources that contribute to these differences and provide insights on the development of
future CH4 mitigation strategies.

2. Materials and Methods
2.1. Mixing Ratio and Meteorological Observations

The atmospheric CH4 and CO2 mixing ratios reported in this study were measured at the Nanjing University
of Information Science and Technology (NUIST, 32°12′N, 118°43′E) campus, which is located about 20 km
north of Nanjing City, Jiangsu, China (Figure 1). There are no obvious point sources of CH4 within 5 km of
the NUIST site. The major CO2 emission sources include the energy industry, manufacturing industry, and
oil production/refineries located within a 100 km radius (C. Hu, Liu, et al., 2018). Our observations, there-
fore, can provide information related to emissions from ecosystems and point sources related to fugitive
CH4 emissions. The main sources of CH4 include rice cultivation, fossil‐fuel related combustion, fossil fuel
exploitation, and landfill emissions. Themeasurements were conducted via a Yale‐NUIST laboratory located
on the ninth floor at a height of 34m above ground. Atmospheric air samples were continuously pumped at a
flow rate of 0.5 ml/s. Our previous studies conducted at the same site verified the observation height is repre-
sentative of CH4 and CO2 mixing ratios within the YRD region (C. Hu, Liu, et al., 2018; Shen et al., 2014; Xu
et al., 2017).

The observational record is defined by two periods. The first period includes simultaneous measurements of
CH4 and CO2 mixing ratios from June 2010 to April 2011 using an infrared gas analyzer (model G1301,
Picarro Inc., Sunnyvale, California, USA). Measurement precision for CH4 was 0.7 and 50 ppb for CO2,
respectively, based on 5‐min averages. Span calibrations (3,050 ppb for CH4 and 390 ppm for CO2) indicated
that the uncertainty was within 1% over the course of the experimental period (Shen et al., 2014). The second
period included continuous observations for 3 years from March 2013 to August 2015. Here, only CO2 mix-
ing ratios were measured using an infrared gas analyzer (model G1101‐I, Picarro Inc., Sunnyvale, California,
USA). The CO2 mixing ratios were calibrated every 3 hr against standards traceable to the National Oceanic
and Atmospheric Administration (NOAA), Earth System Research Laboratory. Based on the Allan variance
analysis, the precision of the hourly measured CO2 mixing ratio was 0.07 ppm. Detailed information regard-
ing the site description and calibration strategies are provided in Shen et al. (2014) and Xu et al. (2017).

To reduce the effects of natural biological sources on our CH4 inversion, we defined a cold/dormant period
(winter and early spring, November 2010 to April 2011) in order to better constrain the anthropogenic emis-
sions. A similar methodology was performed by Tohjima et al. (2014) who constrained anthropogenic CH4

emissions for Asia. Wetland CH4 emissions are typically 50 to 300 μg·m−2·hr−1 in winter and spring and
6,000 to 15,000 μg·m−2·hr−1 in summer for the YRD region (Wang et al., 2009). When considering wetland
and fuel combustion emissions through the whole year, winter emissions represent less than 1% of the total
CH4 emissions (Shen et al., 2014). Natural emissions, therefore, are likely to be negligible when compared
with the average anthropogenic CH4 emissions during winter.
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Meteorological variables including 10‐m wind speed (U10m), 2‐m air temperature (T2m), relative humidity
(RH), downward shortwave (DSWR), and downward longwave radiation (DLWR) were chosen to evaluate
the performance of the Weather Research and Forecasting (WRF) model for the YRD. Four meteorological
sites, Liuhe, Pukou, Nanjing, and Yangzhou located in four different directions from the NUIST observation
site were selected (red dots, Figure 1). These four sites are from the surface stations of the Chinese National
Meteorological Center (http://cdc.cma.gov.cn/). All of the site information is listed in Table 1. The MLW site
provides the radiation observations (red “x” in Figure 1) and have been reported in detail by Lee et al. (2014).
U10m, DSWR, and DLWR are hourly observations, and T2m and RH are measured at 02:00, 08:00, 14:00, and
18:00 (local time). Evaluation metrics of mean bias and root‐mean‐square error (RMSE) for these meteoro-
logical variables are summarized in section 3.1 and Table 3.

2.2. WRF‐STILT Model Setup and Simulation of CH4/CO2 Mixing Ratios

The Stochastic Time‐Inverted Lagrangian Transport (STILT) model is a receptor‐oriented model and has
been widely applied in the transport simulation of many trace gases including CH4 (Chen et al., 2018;
Verhulst et al., 2017), CO2 (Graven et al., 2018; C. Hu, Griffis, et al., 2018; C. Hu, Liu, et al., 2018), N2O
(Chen et al., 2016; Griffis et al., 2017), and CO (Kim et al., 2013). The STILT model can accurately simulate
the source footprint (influence‐weighting functions) for a given receptor. The footprint indicates the sensi-
tivity of the observation taken from a particular location and sample height to different emission sources.
By using the STILTmodel framework themixing ratio enhancements can be derived bymultiplying the foot-
print function with emission maps (Gerbig et al., 2003; Lin, 2003).

The footprints were simulated by releasing a large number of particles from the receptor and tracing their
locations backward for every two integration minutes. The backward transport of these particles was driven
by high‐resolution meteorological fields and boundary layer conditions (e.g.,3‐D wind fields, potential tem-
perature, RH, air density, surface roughness length, and friction velocity; Nehrkorn et al., 2010). By keeping

Figure 1. Simulation domains used in the Weather Research and Forecasting‐Stochastic Time‐Inverted Lagrangian Transport model with view of Nanjing
University of Information Science and Technology site for CH4/CO2 observations (green dot), radiation site (red “x”), and other meteorological evaluation sites
(red dots).
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track of how long each of these particles resides in a given horizontal and vertical grid box, the footprint is
then calculated by integrating the residence time of these particles in the planetary boundary layer as
described in Lin et al. (2003).

The main parameters in the STILT model setup include number of released particles, back trajectory time,
and location and height of the receptor. Following the setup used in our previous work (Chen et al., 2018;
Griffis et al., 2017; C. Hu, Griffis, et al., 2018), 500 particles were released per hour from the same location
of our CH4/CO2 observation site (34‐m height, 32°12′N, 118°43′E). These particles were then tracked back-
wards in time for 7 days. In most cases this was sufficient time for the particles to reach the boundary of the
outermost domain (green rectangle in Figure 1). We usedWRF (version 3.5.1) to simulate the meteorological
fields used to drive the STILT model. Three domains with spatial resolution of 27, 9, and 3 km were used.
Here, the innermost domain included the whole YRD (Table 2). The same PBL and microphysical options
were applied by C. Hu, Liu, et al. (2018) to study CO2 emissions within the same region. Their study showed
that the model had satisfactory performance in simulating the near‐surface air temperature, DSWR, wind
direction, and wind speed for the YRD.

The CH4 and CO2 mixing ratios were simulated as the sum of the enhancement and background mixing
ratios as in equations (1) and (2):

CH4ð Þmodel ¼ CH4ð Þbackground þ ΔCH4ð Þenhancement (1)

ΔCH4ð Þenhancement ¼ ∑
168

i¼1
∑
n

j¼1
footprinti; j×fluxi; j
h i

(2)

These equations are expressed for CH4. Identical equations can be written for CO2(i.e., replace CH4 with CO2

in equations (1) and (2)). The enhancement term, (ΔCH4)enhancement, is the cumulative hourly contributions
for the past 168 hr for different source categories. footprinti,j is the footprint in each grid cell (j) for each
hour (i), and fluxi,j is the flux corresponding to the same grid cell and hour. The background mixing ratio,
(CO2)background, was calculated following the method of C. Hu, Liu, et al. (2018) and C. Hu, Griffis, et al.
(2018). They tracked the air flow of released particles to the outermost boundary, and the CO2 background
fields were obtained from CarbonTracker (section 2.3). At the present time a similar global CH4 data

Table 1
Mixing Ratio and Meteorological Sites Information

Site Latitude Longitude
Direction of
NUIST site Observed variables Period

NUIST 32°12′ 118°43′ CO2 and CH4 mixing ratio June 2010 to April 2011 (CO2/CH4),
March 2013 to August 2015 (CO2)

Nanjing 31°56′ 118°54′ South Wind speed, air temperature, relative humidity December 2010 to April 2011
Liuhe 32°22′ 118°51′ North Wind speed, air temperature, relative humidity December 2010 to April 2011
Pukou 32°03′ 118°37′ West Wind speed, air temperature, relative humidity December 2010 to April 2011
Yangzhou 32°25′ 119°25′ East Wind speed, air temperature, relative humidity December 2010 to April 2011
MLW 31°25′ 120°13′ Downward longwave radiation, downward

shortwave radiation
December 2010 to April 2011

Note. NUIST = Nanjing University of Information Science and Technology; MLW = Mei Liang Wan.

Table 2
WRF Model Domains Setup

Domain setup Domain 1 Domain 2 Domain 3

Study area Central and east China East China Yangtze River Delta area
Spatial resolution 27 km 9 km 3 km
East‐west grid numbers 105 154 253
South‐north grid numbers 111 148 223

Note. WRF = Weather Research and Forecasting.
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product like CarbonTracker is not available. Therefore, we defined the background CH4 mixing ratio,
(CH4)background, as the average of two NOAA CH4 background sites based on the NOAA global network
including Waliguan (WLG) and Ulaan Uul Mongolia (UUM) (more details in section 2.3), which are located
to the north (UUM 1020 km) and northwest (WLG 1700 km) of the NUIST site. To derive hourly adjusted
CO2 anthropogenic emissions for different categories, we used the CO2 emission SFs from Vulcan
(Gurney et al., 2009; C. Hu, Liu, et al., 2018).

2.3. A Priori CH4 and CO2 Flux and Background Data

A number of emission inventories are available for CO2 and CH4 including the U.S. Environmental
Protection Agency (https://www.epa.gov/), VULCAN (Gurney et al., 2009), the Fossil Fuel Data
Assimilation System (Rayner et al., 2010), Open‐source Data Inventory for Anthropogenic CO2 (Oda &
Maksyutov, 2016), and EDGAR products. The Fossil Fuel Data Assimilation System, Open‐source Data
Inventory for Anthropogenic CO2, and EDGAR cover the global scale. while the U.S. Environmental
Protection Agency and VULCAN are specific to the United States. The EDGAR products have been widely
used in evaluating GHG inventories (C. Hu, Griffis, et al., 2018; Peng et al., 2016; Thompson et al., 2015)
given their comprehensive and relatively detailed subcategories. The EDGAR products are used here as
the a priori flux estimates to constrain both the anthropogenic CH4 and CO2 calculations. EDGAR v432
and EDGAR v42 have the same fine spatial resolution of 0.1° × 0.1°. However, EDGAR v42 emissions repre-
sent annual values whereas EDGAR v432 varymonthly (Figures 2a–2d). Based on the EDGAR v432monthly
CH4 inventories, the total anthropogenic CH4 flux densities were 47.4 nmol·m−2·s−1 for 2010 and
52.1 nmol·m−2·s−1 for YRD from November to April 2011. The CH4 emission in March was almost 2 times
the monthly emission from November to January, which was contributed by rapidly increased CH4 emis-
sions from AGS (rice cultivation). This indicates that relatively large variations exist for different months.
Consequently, we used EDGAR v432 as the a priori emissions to help represent the temporal variability
within the inversion framework and also applied EDGAR v42 for comparison with EDGAR v432.

In EDGAR v432 anthropogenic CH4 emissions are separated into 21 subcategories including AGS, AWB,
enteric fermentation, and manure management, fuel exploitation (PRO), energy for buildings (RCO), oil
refineries and transformation industry (REF), waste water handling (WWT), solid waste landfilling, and
road transportation. We note that in EDGAR v432, rice cultivation is the only contributor to AGS emissions.
Based on our inventory analyses for the YRD region in 2010, emissions from AGS accounted for the largest
proportion of anthropogenic CH4 emissions. During our study period (November to April), emissions from
PRO, WWT, RCO, and REF show less seasonal variations between cold/dormant period and the whole year
(see details in section 3.2). Themonthly CH4 emissions for the main sources in the YRD area are displayed in
Supporting Information Figure S1.

In EDGAR v432 the CO2 emissions are separated into two broad categories of short‐cycle biofuel CO2 emis-
sions (nine subcategories, i.e., combustion of biofuel and AWB) and fossil fuels (20 subcategories). The CO2

emission from fossil fuels for the YRD region was 3.66 and 0.30 μmol·m−2·s−1 for short‐cycle emissions in
the year of 2010, indicating that fossil fuel combustion accounted for 93% of the total CO2 emissions. To cal-
culate the CO2 enhancement from ecosystem respiration and photosynthesis, we used the net ecosystem
CO2 exchange CarbonTracker product. This product is based on the optimization of the CASA model via
a CO2 inversion using global observations (Peters et al., 2007). As shown in Figure 2e, net ecosystem CO2

exchange was relatively small for the YRD when compared with anthropogenic CO2 emissions in our study
period (November 2010 to April 2011)..

The CO2 background concentration data are from the CarbonTracker global CO2 distributions (spatial reso-
lution of 3° × 2° and 3‐hourly intervals), which was simulated using the TM5 transport model with opti-
mized CO2 flux (Peters et al., 2007). Since CH4 mixing ratio distributions are not available for China
during our study period, we followed the strategy of Chen et al. (2018) and selected NOAA flask sites as back-
ground values (Chen et al., 2018; Dlugokencky et al., 2009). Since the prevailing winds during winter are
from north China, we selected flask sites WLG (36°17′N, 100°54′E, 3,810‐m height) and UUM (44°27′N,
111°01′E, 1,007‐m height) to define the background CH4 mixing ratio (https://www.esrl.noaa.gov/gmd/
dv/data/). Here, we linearly interpolated the weekly sampled CH4 mixing ratios to hourly values.
Averages of these two sites were used as hourly CH4 background fields. The CCGCRV (a digital filtering
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Figure 2. (a) Anthropogenic CH4 emissions from EDGAR v42, units: log10(mol·m−2·s−1), (b) EDGAR v432, units: log10(mol·m−2·s−1), and (c) the difference
between EDGAR v432 and EDGAR v42, units: nmol·m−2·s−1, and (d) anthropogenic CO2 emissions from EDGAR v432, units: log10(mol·m−2·s−1), and (e) bio-
logical CO2 flux from CarbonTracker, units: mol·m−2·s−1. EDGAR = Emission Database for Global Atmospheric Research.
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curving fitting program developed by Carbon Cycle Group, NOAA, USA) regression method has also been
recommended for fitting flask observations (Thoning et al., 1989), the comparison between linear interpola-
tion and CCGCRV regression produced very similar results (section 3.3). Further, by applying the observed
linear relationship between CO2 and CH4, the CH4 background value can be approximated from the CO2

background data (Wang et al., 2010). Given that the background CO2 mixing ratio in winter was 395 ppm
we estimated a background CH4 mixing ratio of about 1,860 ppb (see details in section 3.5).

2.4. Constraining CH4 emissions

Three different approaches were used to constrain the anthropogenic CH4 emissions for the YRD region
including (1) multiplicative scaling factors (MSF), (2) flux ratios (FR), and (3) scale factor Bayesian inversion
(SFBI). Figure 3 provides an overview of the strategy used. The key steps included (1) simulating CH4 and
CO2 enhancements by multiplying the source footprints with the a priori emission maps, (2) applying the
MSF method to constrain the a priori CH4 and CO2 emissions, (3) using the calibrated CO2 emissions with
the FR approach to constrain CH4 emissions, (4) applying the SFBI approach to constrain the total and parti-
tioned CH4 emissions, and (5) comparing the results from these three different methods to assess the consis-
tency of the posteriori anthropogenic CH4 emissions for the YRD region.
2.4.1. MSF Approach
The accumulation of GHG mixing ratios in urban domes has been identified as a suitable approach for
retrieving urban emissions. This is based on the theory that an air mass records the enhancement of atmo-
spheric CH4 and CO2 mixing ratios. Such enhancements represents excess mixing ratios that can be used to
quantify GHG emissions (Duren & Miller, 2012; Miller et al., 2013). The MSF approach has been used in
many urban areas such as Nanjing, China (C. Hu, Liu, et al., 2018) and Boston, USA, (Sargent et al.,
2018). The SFs can be derived by dividing the observed GHG enhancements by the modeled GHG enhance-
ments. Here, this approach consists of two main steps: (1) The observed GHG enhancements were estimated
from the observations by subtracting the sum of background data and the biological enhancements (C. Hu,
Liu, et al., 2018; Sargent et al., 2018). The modeled GHG enhancements were obtained by multiplying the
source footprints with the anthropogenic emissions; and (2) to reduce the random errors of the modeled
hourly enhancements, the SFs were derived by using monthly averages of these values. Therefore, the SFs
for CH4 and CO2 were calculated as

SFCH4 ¼
ObsCH4−CH4background

ΔCH4Anthro enhancement
(3)

SFCO2 ¼
ObsCO2−CO2background−ΔCO2Bio enhancement

ΔCO2Anthro enhancement
(4)

where Obs is observed atmospheric mixing ratio, and Δ indicates simulated enhancement of corresponding
source categories related to biological (subscript Bio_enhancement) and anthropogenic (subscript
Anthro_enhancement) fluxes. Note that the CO2 emissions are constrained here so that it can be used as
a tracer to retrieve CH4 emissions using the FR method (described below).

The MSF approach is susceptible to errors in the background mixing ratio estimate, the WRF simulated
meteorological fields, and the STILT back trajectories. Following the strategy of C. Hu, Liu, et al. (2018),
we used a Monte Carlo approach (applied to equations (3) and (4)) to assess the extent to which these factors
impacted the results. Here, we assumed a normal sample distribution with the lower 2.5% and upper 97.5%
of the values considered as the uncertainty (Cao et al., 2016). We assigned relative uncertainties for the
Monte Carlo simulations as follows: The uncertainty associated with the meteorological fields and particle
back trajectories was assigned a mean value of 13% based on previous studies (Chen et al., 2018; Guo
et al., 2016; C. Hu, Liu, et al., 2018). A much larger uncertainty of 50% was assigned to the biological CO2

enhancement (Peters et al., 2007). A 1% uncertainty was assigned to the observed CO2 and CH4mixing ratios
based on the quality of span calibrations (Shen et al., 2014). The uncertainty in the background CO2 mixing
ratio was assigned a value of 0.5% based on our analysis of Mauna Loa observations versus the Carbon
Tracker estimate for the same location. For instance, results for the whole year showed a mean bias of
0.18 ppm (0.05%), standard deviation of 0.60 ppm (0.16%) compared with the mean annual observation of
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385 ppm for 2008. The uncertainty in the CH4 background values was determined as the relative average dif-
ference between the two NOAA sites (2%).
2.4.2. FR Approach
The FR approach has been widely applied to derive emissions of target gases that are difficult to measure
(Shen et al., 2014; Turnbull et al., 2011; Vardag et al., 2015; Wang et al., 2013). This approach is based on
the assumption that the two different gases are well mixed, with no significant chemical losses during the
transport process, and that their concentration regression slope is representative of the emission ratio.
Based on our previous work, we have shown that CO2 emissions are well constrained and have less
uncertainty when compared to CH4 for YRD (C. Hu, Liu, et al., 2018; Shen et al., 2014; Xu et al., 2017).

Here we use CO2 as a tracer to help constrain CH4 emissions for the YRD region. The FR was calculated
using equations (5)–(8):

Oslope ¼ OemissionCH4

OemissionCO2

(5)

Mslope ¼ MemissionCH4

MemissionCO2

(6)

OCH4 ¼
MCH4

Mslope

Oslope

×
OCO2

MCO2

¼ MCH4

SF
; SF ¼

Mslope

Oslope

OCO2
MCO2

0
@

1
A (7)

posteriori YRDCH4 ¼
priori YRDCH4

SF
(8)

whereOslope is observed regression slope for atmospheric CH4 (OatmosphericCH4) and CO2 (OatmosphericCO2) obser-
vations. OemissionCH4 and OemissionCO2 represent the correct emissions of CH4 and CO2. Mslope is regression
slope for modeled atmospheric CH4 (MatmosphericCH4) and CO2 concentration (MatmosphericCO2 ) obtained from
the a priori emissions.MemissionCH4 andMemissionCO2 represent the a priori emissions for CH4 and CO2. MSF is
the derived SF of CH4 for different footprint source areas, and

OCO2
MCO2

is a SF for CO2 that was derived previously
from the MSF methodology. The prioriYRDCH4 is the a priori CH4 emission for YRD, and posterioriYRDCH4 is
the optimized CH4 emissions for YRD.

We calculated the emission ratios between CH4 and CO2 with different areas radius and found that the emis-
sion ratios are 0.032 ± 0.005 as the source area radius increased from 50 to 500 km, and more details are
shown in Figure S2. This uncertainty was driven by the heterogeneous distribution of both CO2 and CH4

in YRD and this variability represents the relative uncertainty in the FR approach for the region.

Figure 3. Overview of the three different top‐down methods for constraining CH4 emissions in the Yangtze River Delta
region, China. EDGAR = Emission Database for Global Atmospheric Research; FR = flux ratio; MSF = multiplicative
scaling factors; SFBI = scale factor Bayesian inversion; STILT = Stochastic Time‐Inverted Lagrangian Transport;
WRF = Weather Research and Forecasting.
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2.4.3. SFBI Approach
In the SFBI approach the optimal solution is to minimize the cost function J(Γ), which represents the
mismatch between measured and simulated CH4 concentrations and the mismatch between the a priori
and posteriori SFs. Both of these are weighted by the corresponding error terms. The cost function J(Γ)
has the form

2J Γð Þ ¼ y−KΓð ÞTS−1e y−KΓð Þ þ Γ−Γað ÞTS−1a Γ−Γað Þ (9)

where y represents the observed CH4 concentrations after subtracting the background CH4 value, K is the
Jacobian matrix whose values represent sensitivities of observations to the corresponding source contribu-
tions, Γ includes the a posteriori SFs for the various source contributions, Se and Sa are the error covariance
matrices for observations and the a priori values. Here Γa is treated as 1. Therefore, the solution for minimiz-
ing this cost function and obtaining the posteriori SFs is to solve∇Γ J(Γ) = 0, as

Γpost ¼ KTS−1e K þ S−1a
� �−1

KTS−1e yþ S−1a Γa
� �

(10)

The SFBI method requires the construction of error covariance matrices and a state vector for the a priori
and observational data. Two primary model errors arise from both WRF model simulated boundary layer
height (SPBLH) and the number of particles released in the STILTmodel (Sparticles). Following previous work,
we assigned an uncertainty value of 13% for relative bias in Sparticles in STILT (Chen et al., 2018; C. Hu, Liu,
et al., 2018; Kim et al., 2013). Given the lack of boundary layer height observations, a 10% uncertainty was
assigned to SPBLH based on previous work in China (Guo et al., 2016). We assigned an uncertainty of
100% for the a priori sources including AGS, PRO, RCO, REF, WWT, and Others (i.e., the sum of all remain-
ing categories) following previous studies (Peng et al., 2016; Shen et al., 2014; Thompson et al., 2015;
Tohjima et al., 2014).

We applied two strategies to obtain the uncertainty in the background, observed, and simulated CH4 mixing
ratios. The first strategy (hereafter strategy 1) assumed the observed CH4 enhancements as y (true values,
described in section 2.4.1) and the WRF‐STILT simulated CH4 enhancements as tagged tracer mixing ratios
from each of the main sources being optimized. Here the observed CH4 enhancements represent observa-
tions minus the background mixing ratios. Both contain uncertainties related to the analyzer measurement
noise. In this strategy a value of 0.7 ppb was used as reported in a previous study (Shen et al., 2014). As
described above, the uncertainty in the background CH4 value ranged from about 2% to 5%. Therefore, we
conservatively estimated the uncertainty in Sobs as 0.7 + 0.05 × obs. In the second strategy (hereafter strategy
2) we estimated the uncertainty in observations and background CH4 separately. Here, we defined the
observed CH4 mixing ratio observations as y and treated the background CH4 as a variable in x to be opti-
mized together with the other six categories (defined above). In this case we assigned a higher uncertainty
value for the background as 10% and the uncertainty of CH4 mixing ratio observations calculated
as 0.7 + 0.002 × obs.

3. Results
3.1. Evaluation of Model Meteorological Fields for YRD

The quality of the WRF model simulated meteorological fields has been evaluated using multiple observa-
tions throughout the YRD region. The model simulated reasonably well the T2m, U10m, RH, DLWR, and
the DSWR for the whole study period (Table 3). As shown in Figure S3, simulated meteorological variables
showed excellent agreement with the observations, capturing the diel, daily, and seasonal patterns. The
DLWR was slightly underestimated and the DSWR was slightly overestimated (DLWR: RMSE = 46.78
W/m2, r = 0.81, DSWR: RMSE = 155.86 W/m2, r = 0.87). These biases can be explained by the systematic
underestimation of simulated clouds by WRF (Zhao et al., 2013).

3.2. WRF‐STILT Simulated Footprints and EDGAR Inventory

The hourly concentration footprints from the study period (November 2010 to April 2011) were averaged
and are displayed in Figure 4a. The monthly average concentration footprints are also shown in
Figure S4. Previous studies have defined the most sensitive zone as the source areas with a footprint smaller
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than 10−4 ppm m2 s/μmol (Chen et al., 2016, 2018; Kim et al., 2013). C. Hu, Liu, et al. (2018) and C. Hu,
Griffis, et al. (2018) quantified a threshold of 10−3 ppm m2 s/μmol as the intense source area defined where
80% of the CO2 enhancement was realized. We used a similar approach to define the most intense source
area for CH4 emissions. As shown in Figure 4a, the intense source area (yellow shading) includes east
Anhui and west Jiangsu Province. This region accounted for 84% of the total anthropogenic CH4 enhance-
ment. When applying a threshold of 10−4 ppm m2 s/μmol, we observed that 97% of the CH4 enhancement
had a source from within the greater YRD region. Given the footprint pattern for each month we see a
northwest‐southeast orientation (November to March), controlled by the northeast monsoon in winter.
Further, these source footprints indicate that the selected background NOAA CH4 sites in the north are sui-
table for these inverse analyses.

3.3. Comparison Between Observations and Modeled CH4 and CO2 Mixing Ratios

EDGAR v432 was used to estimate the anthropogenic CO2 emissions and EDGAR v42 and EDGAR v432
were used to simulate the CH4 mixing ratios to provide a robust comparison. Based on the inventory ana-
lyses for the YRD region in 2010, emissions from AGS averaged 18.17 nmol·m−2·s−1 and accounted for
the largest proportion (38.4%) of anthropogenic CH4 emissions. The remainder of the anthropogenic CH4

emissions were dominated by PRO (8.87 nmol·m−2·s−1, 18.7%), WWT (7.57 nmol·m−2·s−1, 16.0%), RCO
(3.91 nmol·m−2·s−1, 8.3%), and REF (0.92 nmol·m−2·s−1, 2.0%). During our study period (November to
April), emissions from AGS averaged 20.46 nmol·m−2·s−1 (39.3%), PRO (8.95 nmol·m−2·s−1, 17.2%), WWT
(7.63 nmol·m−2·s−1, 14.7%), RCO (5.60 nmol·m−2·s−1, 10.8%), and REF (0.92 nmol·m−2·s−1, 1.8%). They
show less variation between the cold/dormant period and the whole year. The monthly CH4 emissions for
the main sources are displayed in Figure S1. These emissions are also compared to those derived from the
linear interpolation and CCGCRV regressions (Figure S5). Here, the estimated emissions are in excellent
agreement and differ by less than 0.5%. Therefore, we present the remaining results based on the simple
linear interpolation method. As shown for CO2 in Figures 5a and 5b, the simulated CO2 mixing ratios using

Table 3
Performance Statistics for Meteorological Fields at Four Selected Sites: Liuhe, Pukou, Nanjing, and Yangzhou, China, From December 2010 to April 2011

Liuhe Pukou Nanjing Yangzhou

RMSE r MB RMSE r MB RMSE r MB RMSE r MB

U10m (m/s) 2.17 0.61 1.38 2.34 0.60 2 1.98 0.58 0.85 2.84 0.45 2.07
RH (%) 18.26 0.71 6.2 16.88 0.71 4 17.1 0.74 5.34 16.44 0.71 2.21
T2m (°C) 3.27 0.95 2.09 3.39 0.94 2 3.55 0.94 2.49 3.68 0.93 2.43

Note. Mean bias (MB) and root‐mean‐square error (RMSE) are displayed. RH = relative humidity; T2m = 2‐m air temperature; U10m = 10‐m wind speed.

Figure 4. Averaged concentration footprints (ppm m2 s/μmol) from November 2010 to April 2011 (a), and normalized
CH4 contribution from different source footprint sizes (b).
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EDGAR v432 captured the diel and daily patterns of the observations reasonably well, yielding a correlation
coefficient R2 = 0.12 (n= 4178, P< 0.001) and RMSE= 23.4 ppm. This indicates relatively good performance
for both the WRF simulated meteorological fields and the simulation of the particle back trajectories using
the STILT model. The high consistency with the CO2 observations also revealed less bias for the EDGAR
v432 versus the EDGAR v42 inventories of anthropogenic CO2 emissions.

According to the Yale‐NUIST laboratory observations the mean CH4 mixing ratio was 2,089.2 ppb during
November 2010 to April 2011. The measured CH4 mixing ratios at the background site Lin'An (119.44°E,
30.18°N, located in Zhejiang province, YRD) were 1,935, 1,947, and 1,961 ppb for the years 2009, 2010,
and 2011, respectively (Fang et al., 2013). These CH4 mixing ratios at Lin'An background site are still higher
when compared with NOAA background sites at UUM andWLG (1,874.6 ppb on average), and indicate con-
tribution by regional anthropogenic CH4 signals. The difference between our measured value at Yale‐NUIST
and the Lin'An site reflects the strong anthropogenic CH4 enhancements that occurred in YRD.
Examination of the hourly observations for different months indicates a number of emission peaks and
hot moments. These mainly occurred in November and December. The CO2 observations during the same
period did not show the same hot moments indicating that CO2 and CH4 are not always coemitted from
the same sources during these periods. The CH4 hot moments were likely driven by emissions from WWT
and solid waste landfilling, which will be discussed later. In general, the simulated mixing ratios with both
inventories captured the diel and daily patterns of observations reasonably well with R2 = 0.18 (n = 4221,
P < 0.001) and RMSE = 237.1 ppb for v432, and R2 = 0.15 (n = 4221, P < 0.001) with RMSE = 225.5 ppb
for v42, respectively. The model results were generally biased high for most of the study period for both of
these two CH4 inventories (77.1 ppb for v432 and 41.7 ppb for v43), especially from January to April, indicat-
ing that the bottom‐up inventories overestimated the CH4 emissions.

Averaged diel variations of CO2 and CH4 from November 2010 to April 2011 are shown in Figure 6. The
simulated CO2 and CH4 mixing ratios showed similar diel patterns with peaks at 08:00 to 09:00 local time
and then gradually decreasing to minimum values around 18:00. The modeled diel variations for CO2 were
in very good agreement with the observations, with R2 = 0.64 (P < 0.001), RMSE = 8.8 ppm for the averaged
diel patterns for these 6 months. However, the observed CH4 mixing ratios were always lower compared to
the modeled results for the period December to April, with November being an exception. Here, the
R2 = 0.71 (P < 0.001) and RMSE = 90.9 ppb for v432 and the R2 = 0.73 (P < 0.001) and RMSE = 76.5 ppb
for v42 for the diel patterns for these 6 months. As noted above, the underestimation of the CH4 mixing

Figure 5. Comparison between observed andmodeled hourly CO2 from (a) November to January, (b) February to April, and CH4 mixing ratios from (c) November
to January, (d) February to April.
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ratios in November was related to observed hot moments during some individual periods, which did not co‐
occur with emitted CO2. Further, the overestimation in the other months was caused by an overestimation of
CH4 emissions from other source categories. Detailed results and examination of these source categories will
be evaluated in section 3.4.3 using the SFBI approach. The results above also indicate less bias in the CO2

inventories than for CH4.

3.4. Constraining Anthropogenic CH4 and CO2 Emissions
3.4.1. Multiplicative SFs
As shown in Figure 7a the simulated CO2 enhancements exhibited similar variations with observations for
each month. Figure 7a also highlights that there is little bias in the a priori CO2 inventories, with an overall
relative model bias of 5% for these 6 months. This further supports that the uncertainty estimates of the CO2

inventory was within 7% for the YRD for the years 2013 to 2015 (C. Hu, Liu, et al., 2018). The observed CO2

enhancements between 2013 and 2015 were larger than for 2010–2011 for the 6‐month study period. This
large increase was attributed to the increased anthropogenic CO2 emissions during these years as a result

Figure 6. Monthly averaged diel variations of CO2 and CH4 mixing ratios from November 2010 to April 2011.
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of increased economic growth in China. Here, the GDP increased by 56% over the period 2009 to 2012. The
simulated CH4 enhancements were relatively large compared to the observations (Figure 7b). Other than
November, the model results were greater than the observed CH4 enhancements from December 2010 to
April 2011, with an overall model bias of 22% (36% if November was included). Given that the
WRF‐STILT footprint and atmospheric transport are the same for CH4 and CO2, the difference in CH4

enhancement between the model and observations resulted from the difference between the a priori inven-
tories and the observed emissions.

The monthly MSFs for EDGAR v432 were 1.51 (±0.27), 0.92 (±0.23), 0.58 (±0.21), 0.54 (±0.14), 0.45 (±0.13),
and 0.71 (±0.18) for November to April, respectively (Table 4), these uncertainties were derived from the SF
uncertainties as described in section 2.4.1. These MSFs indicated that the a priori CH4 from EDGAR v432
generally overestimated CH4 emissions except for November, as discussed in section 3.4.3. After applying
the MSFs to the monthly CH4 emissions, the posteriori CH4 emission estimate was 37.31 (±9.46) nmol·m
−2·s−1 and 28.3% lower than EDGAR v432. Further, we performed the same analysis for EDGAR v42 to
provide a robust comparison. Here the posteriori CH4 emission was 35.33 (±8.87) nmol·m−2·s−1, which

Figure 7. Comparison between modeled and observed (a) CO2 and (b) CH4 enhancement (Emission Database for Global
Atmospheric Research v432). The major source categories are shown. Error bars indicate the standard bias of CO2
enhancement within 3 years (2013 to 2015); subcategories are displayed for CH4 with AGS (agricultural soil), PRO (fuel
exploitation), RCO (energy for buildings), REF‐TRF (oil refineries and transformation industry), WWT (waste water
handling), and others (the sum of remaining categories), and with ENE (power industry), IND (combustion for manu-
facturing), REF‐TRF (oil refineries and transformation industry), and NMM (nonmetallic minerals production) for CO2
subcategories. ENF = enteric fermentation; SWD‐LDF = solid waste landfilling.
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was about 16.8% lower than the a priori emission estimate from EDGAR v42. Therefore, both
approaches yielded similar posteriori emissions. Taken together, these analyses support that both
inventories consistently overestimated the observed CH4 emissions for the YRD region. The average
posteriori CH4 emission was 36.32 (±9.17) nmol·m−2·s−1 for these two approaches and 69.8 (±17.6)% of
EDGAR v432 emissions.

Applying the same method to constrain CO2 emissions in EDGAR v432, we obtained SFs of 1.07 (±0.20),
0.88 (±0.21), 0.91 (±0.20), 0.84 (±0.17), 0.87 (±0.22), and 1.16 (±0.26) for November 2010 to April 2011,
respectively. The posteriori emissions were 4.15 (±0.92) μmol·m−2·s−1, approximately 5% lower than the
EDGAR v432 a priori inventory of 4.38 μmol·m−2·s−1. These posteriori CO2 emissions will be used to
constrain anthropogenic CH4 emissions using the FR approach below.
3.4.2. FR Results
Because the atmosphere is usually turbulently well‐mixed during midday (10:00 to 17:00 local time), the
mixing ratio relationship can be used to represent the flux relationship at a much larger spatial scale than
during the night (Shen et al., 2014; C. Hu et al., 2018; Sargent et al., 2018). Here we used daily midday
CO2 and CH4 average values to compute the FR from linear regression analyses from November 2010 to
April 2011. The simulated FR between CH4 and CO2 was 0.0085 ± 0.0008 for EDGAR v432 and was signifi-
cantly larger than our observations, 0.0061 ± 0.0008 (Figure 8). Since the CO2 emissions are well con-
strained, these FR results indicate that the IPCC based CH4 inventories overestimated CH4 emissions for
the YRD region.

We concluded that the FR slope difference between observations and
model simulations was mainly caused by an overestimation of the
anthropogenic CH4 emissions, because as was shown in section 3.4.1,
the a priori CO2 emissions was only overestimated by 5%. Therefore,
the slope difference between the model and observations implies an
overestimation of the a priori CH4 emissions. This FR slope difference
can be applied to calibrate the a priori CH4 emissions. The simulated
CH4 and CO2 slope was 0.0085 when using EDGAR V432. As noted
above in section 3.4.2 the FR can vary as a function of footprint size
within the YRD as a result of the heterogeneity of CO2 and CH4 sources.
The SF for CH4 should have less uncertainty as the spatial scale increases
and the heterogeneous sources become well mixed in the atmospheric
boundary layer.

The FR slope differences between observations and EDGAR v432
reflected the fact that CH4 emissions in EDGAR v432 were overestimated
by a factor of 1.39 ± 0.12 (0.0085/0.0061), assuming the CO2 emissions
from EDGAR v432 represent the true values. As shown in section 3.3,
the MSF approach revealed that CO2 emissions were overestimated by
5%. Therefore, the corrected SF for CH4 should be 1.46 ± 0.13 (1.39/
0.95). The a priori anthropogenic (EDGAR v432) CH4 emissions in the
YRD region was 52.06 nmol·m−2·s−1. When applying the SF of
1.46 ± 0.13, the calibrated CH4 emission was 35.66 (±2.92) nmol·m−2·s−1.

Table 4
Multiplicative Scaling Factor Analysis for CH4 Emissions in the Yangtze River Delta Region

CH4 inventories Emissions November December January February March April Average

EDGAR v432 (nmol·m−2·s−1) prior 37.31 37.06 37.25 60.63 76.63 63.50 52.06
SFs 1.51 (±0.27) 0.92 (±0.23) 0.58 (±0.21) 0.54 (±0.14) 0.45 (±0.13) 0.71 (±0.18)
post 56.38(±10.03) 33.98 (±8.62) 21.57(±7.78) 32.91(±8.58) 34.19(±10.26) 44.78(±11.47) 37.31(±9.46)

EDGAR v42 (nmol·m−2·s−1) prior 42.44 42.44 42.44 42.44 42.44 42.44 42.44
SFs 1.30(±0.23) 0.81 (±0.20) 0.55(±0.20) 0.70 (±0.18) 0.70 (±0.21) 0.93 (±0.24)
post 55.38(±9.80) 34.24(±8.60) 23.49(±8.36) 29.74(±7.67) 29.67(±8.80) 39.45(±10.00) 35.33(±8.87)

Note. EDGAR = Emission Database for Global Atmospheric Research.

Figure 8. Scatter plots of CH4 and CO2 mixing ratio for both observations
and simulations using prior inventories. The number of observations (n),
regression coefficient (R), 95% confidence bound, and P values are also
shown. EDGAR = Emission Database for Global Atmospheric Research.

10.1029/2018JG004850Journal of Geophysical Research: Biogeosciences

HU ET AL. 1163



Based on these analyses, we also retrieved the background CH4 mixing ratio following the method of Wang
et al. (2010). For example, assuming a background CO2 value of 395 ppm in winter we estimated a back-
ground CH4 value of (395 × 0.0061 − 0.55) × 1,000 = 1,859.5 ppb, where the slope of 0.061 and intercept
of −0.55 was derived from the observations shown in Figure 8. The average CH4 background mixing ratio
based on the two NOAA sites (WLG and UUM) was 1,874.6 ppb and in reasonably good agreement.
These results suggest that the WLG (36°17′N, 100°54′E, 3,810‐m height) and UUM (44°27′N, 111°01′E,
1,007‐m height) sites can provide a reasonable estimate of the background CH4 mixing ratio.
3.4.3. SFBI
Results from the SFBI analyses are summarized in Table 5. Both strategies of handling the background CH4

mixing ratio within the inversion (see details in section 2.4.3 for these two strategies) generated similar
results for the different source categories. Further, the sum of all CH4 categories yielded posteriori emissions
of 36.61 (±14.69) for strategy 1 and 35.45 (±13.81) nmol·m−2·s−1 for strategy 2. The uncertainties presented
here were calculated using the Monte Carlo approach. The results for both strategies were 70.3 (±28.2)% and
68.1 (±26.5)% of the a priori EDGAR v432 inventory emissions.

The SFs derived from the SFBI analyses indicate that CH4 emissions from PRO were generally overesti-
mated. The SF varied between 0.31 and 0.94 during 6 months for both strategies. The average posteriori

Table 5
Scaling Factors (dpost) and Posteriori CH4 Emissions (nmol·m−2·s−1) Derived From the SFBI Approach

Categories Strategy Emissions November December January February March April Average

AGS priori 8.26 8.00 8.00 25.57 41.75 31.21 20.46
1 dpost 1.08 1.01 0.71 0.56 0.45 0.42 0.70

post 8.92 8.04 5.70 14.27 18.68 13.14 11.46
2 dpost 1.24 1.03 0.68 0.43 0.29 0.40 0.68

post 10.22 8.23 5.41 10.94 12.22 12.37 9.90

PRO priori 8.99 8.70 8.70 9.63 8.70 8.99 8.95
1 dpost 0.70 0.31 0.47 0.89 0.89 0.88 0.69

post 6.33 2.70 4.06 8.58 7.73 7.89 6.22
2 dpost 0.94 0.36 0.43 0.86 0.83 0.87 0.72

post 8.45 3.16 3.74 8.24 7.25 7.86 6.45

RCO priori 5.53 6.31 6.50 6.35 4.97 3.95 5.60
1 dpost 0.97 0.94 0.69 0.90 0.93 0.95 0.90

post 5.39 5.93 4.49 5.69 4.60 3.73 4.97
2 dpost 1.13 0.97 0.66 0.86 0.90 0.94 0.91

post 6.22 6.12 4.28 5.45 4.46 3.71 5.04

REF priori 0.93 0.90 0.90 1.00 0.90 0.93 0.92
1 dpost 0.68 0.66 0.59 0.93 0.90 0.77 0.75

post 0.63 0.59 0.53 0.92 0.81 0.71 0.70
2 dpost 0.88 0.69 0.57 0.91 0.88 0.77 0.78

post 0.81 0.62 0.51 0.90 0.79 0.72 0.73

WWT priori 7.67 7.42 7.42 8.21 7.42 7.67 7.63
1 dpost 0.92 0.87 0.55 0.85 0.87 0.87 0.82

post 7.08 6.42 4.08 6.97 6.45 6.68 6.28
2 dpost 1.17 0.91 0.51 0.80 0.82 0.86 0.84

post 8.98 6.72 3.81 6.53 6.08 6.58 6.45

Others priori 5.91 5.72 5.73 9.89 12.89 10.78 8.49
1 dpost 0.93 0.87 0.66 0.83 0.81 0.84 0.82

post 5.50 4.95 3.77 8.17 10.48 9.02 6.98
2 dpost 1.12 0.90 0.63 0.77 0.74 0.82 0.83

post 6.64 5.15 3.58 7.58 9.53 8.86 6.89

All categories priori 37.29 37.04 37.24 60.65 76.63 63.52 52.06
1 post 33.84 28.63 22.64 44.60 48.75 41.18 36.61
2 post 41.32 30.00 21.33 39.64 40.33 40.09 35.45

Note. Results of both strategies (strategy 1 and 2) are shown. SFBI = scale factor Bayesian inversion; AGS = agricultural
soil; PRO = fuel exploitation; RCO = energy for buildings; REF = oil refineries and transformation industry;
WWT = waste water handling; Others = the sum of remaining categories.
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emissions were 6.22 nmol·m−2·s−1 for strategy 1 and 6.45 nmol·m−2·s−1 for strategy 2, indicating an
overestimate of 30.8% (strategy 1) and 28.0% (strategy 2) when compared with the EDGAR v432 inventory
emissions. Further, the SFBI analyses also support that emissions from AGS were also overestimated
from January to April. Note that monthly EDGAR v432 inventory has already considered the seasonal var-
iation of AGS (Figure S1), and it reflects the mismatch between the monthly inventory and true emissions.
As noted, rice cultivation is the only contributor to AGS emission (Janssens‐Maenhout et al., 2017). Here, the
SFBI inversion results for AGS contain all CH4 emissions from agricultural lands, and include intensive irri-
gation systems such as canals and ditches in the YRD area (i.e., retained water in the winter). Methane emis-
sions from these irrigation systems are also included in our posteriori estimate for AGS. The posteriori
emissions were 11.44 and 9.88 nmol·m−2·s−1 and approximately 44.0% and 51.7% lower than the a priori
emissions EDGAR v432. The underestimation in November was mainly attributed to energy for building
andWWT. The SFs for the other source categories did not reveal large biases when compared with the inven-
tory emission data. Based on the SFBI analyses, it appears that the EDGAR v432 inventory emissions are
overestimated for the YRD region, which is caused primarily by an overestimation of emissions from PRO
and rice cultivation categories. In general, rice cultivation is the largest CH4 source in the YRD region
and accounts for 29.6% of the total anthropogenic emissions during our study period (November 2010 to
April 2011). WWT was the second largest source accounting for 17.7% and PRO ranked third and accounted
for 17.6%.

To evaluate the posteriori CH4 emissions, we applied the SFBI SFs to the corresponding CH4 emission source
categories and simulated CH4 mixing ratios again (red color in Figure 9). As shown, the large discrepancy
between observations and model simulations decreased significantly following the SFBI optimization. The
posteriori simulated CH4 mixing ratios and enhancements show very good agreement with the observations
(Figure 9a). Analysis of the weekly average values (Figure 9b) show that the slope decreased from 1.22 to 0.95
for the posteriori emissions versus the a priori emissions and that the R2 between the observed weekly aver-
aged CH4 enhancements with the simulated results improved from 0.003 to 0.42.
3.4.4. Comparison of Three Top‐Down Methods
Based on three different “top‐down” methods, we have constrained anthropogenic CH4 emissions for the
YRD area, one of the world's most densely populated regions. We have estimated CH4 emissions to be
36.32 (±9.17), 35.66 (±2.92), and 36.03(±14.25) nmol·m−2·s−1 using the MSF, FR, and SFBI approaches,
respectively (Figure 10). Overall, these posteriori emissions were 30.2(±17.6)%, 31.5 (±5.6)%, and 30.8
(±27.4)% lower than the a priori EDGAR v432 inventory (52.06 nmol·m−2·s−1). The Bayesian inversion
approach also indicates that the large bias is mainly attributed by an overestimation of emissions from fossil
fuel exploitation and rice cultivation. When averaging all three approaches the anthropogenic CH4 emis-
sions in the YRD area was estimated to be 36.00 (±8.78) nmol·m−2·s−1. Therefore, EDGAR v432 overesti-
mated the anthropogenic CH4 emissions by 44.6% on average.

When excluding AGS emissions, the sum of remaining anthropogenic CH4 emission was 4.59 (±1.12) Tg in
2010 for the YRD area. We further calculated the anthropogenic CH4 emissions in the cold/dormant period
and compared it with the annual average in 2010 (EDGAR v432). The total anthropogenic CH4 emissions
were 52.06 nmol·m−2·s−1 for the cold/dormant period and 47.39 nmol·m−2·s−1 for the annual average.
AGS emissions were 20.46 and 18.17 nmol·m−2·s−1, for these periods, respectively. In 2010–2011, the a priori
anthropogenic CH4 emissions were 9.46 Tg for YRD and the posteriori total anthropogenic CH4 emissions
were 6.52(±1.59) Tg for the YRD area.

4. Discussion

Based on the bottom‐up IPCCmethodology, Shen et al. (2014) concluded that anthropogenic CH4 emissions
were 5.07 (±0.76) Tg for the YRD in 2009. Their estimate is in reasonably good agreement with our top‐down
estimates. Our findings also agree well with Thompson et al. (2015) who constrained CH4 emissions for East
Asia by using flask and in situ measurements in combination with an atmospheric transport model and
Bayesian inversion method. They concluded that EDGAR v42 overestimated emissions in China by 29%
between 2000 and 2011. Xiao et al. (2004) conducted aircraft observations of the Asian outflow in 2000. By
applying the FR method they concluded that the Streets et al. (2003) inventory was biased low by about
40%. They attributed this underestimation to a low bias in livestock and landfill sources in China. From both
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observations and model simulations in Asia, Tohjima et al. (2014) derived 10 years of ΔCH4: ΔCO2 enhance-
ment correlations in winter (November toMarch) and compared anthropogenic CH4 emissions (without rice
cultivation) with the EDGAR v42 inventory. They found reasonably good agreement between their results
and EDGAR v42 from 1998 to 2002, while EDGAR v42 showed significantly higher CH4 emissions and an
increasing trend in emissions between 2002 and 2010. This was attributed to an overestimating of coal
mining emissions.

The agricultural sector accounts for about 50% of global GHG emissions (Wang et al., 2012). Agricultural
CH4 emissions include emissions from crop cultivation (rice and wheat), fertilizer use, and animal waste.
In China, rice cultivation accounted for nearly 21.5% (or 14.2 Tg) of total anthropogenic CH4 emissions in
2012 (Janssens‐Maenhout et al., 2017). The uncertainties in these CH4 emissions relate to cropping area,

Figure 9. Comparison between observed CH4 enhancements with modeled enhancement by using prior and post inven-
tory CH4 emissions for (a) daily CH4 concentrations and (b) weekly averaged CH4 enhancements.

Figure 10. Comparison of posteriori anthropogenic CH4 emissions constrained by three top‐down methods with the a
priori EDGAR v432 inventory; subcategories are displayed with AGS (agricultural soil), PRO (fuel exploitation), RCO
(energy for buildings), REF‐TRF (oil refineries and transformation industry), WWT (waste water handling), and Others
(the sum of remaining categories).
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crop properties, field irrigation information, manure production, and applied organic matter amendments
(Khalil & Butenhoff, 2008). Excluding cropping area, all of these factors can influence the CH4 EFs. The
EF for rice cultivation in China is 5 times larger than India in inventories used to calculate global CH4

emissions for EDGAR v432 (Janssens‐Maenhout et al., 2017). This difference has been attributed to the
multiple harvests per year from irrigated rice fields (China) than rain‐fed (India). The EFs for irrigated rice
fields in China have decreased by about one third for the new farming practices established over the period
1970 to 2000 (Li et al., 2002). Our knowledge of these changes in land management practices is generally
poor, not well represented in inventories, and highly uncertain at fine spatial and temporal scales (i.e.,
monthly and regional scale). This can lead to large biases in model upscaling. A recent study by Liu
et al. (2016) indicated that land use changes in the YRD area can alter CH4 emissions by up to 48% depend-
ing on the land use area associated with rice paddies versus aquaculture. Therefore, lack of up‐to‐date land
use information can lead to large biases in CH4 emissions at the regional scale. Based on process‐based
models and applying uncertainty analyses, Zhang et al. (2014) found that the CH4 emissions from rice
cultivation varied between 4.5 and 8.7 Tg/year in China (95% confidence interval) with a propagated
uncertainty of 100% at the country scale. Estimates based on the IPCC methodology indicate that global
CH4 emissions from rice cultivation ranges between 14.8 and 41.5 Tg/year, yielding an uncertainty on
the order of 300% (Yan et al., 2009).

Many studies have also shown large variations in wintertime CH4 emissions and EFs based on field experi-
ments. For example, a 4‐year field measurement campaign of CH4 emissions from rice cultivation in Jiangxi,
China, demonstrated that wintertime (November to April) average emissions varied between 0.02 and
0.18 mg·m−2·hr−1 (Zhang et al., 2016). Our posteriori CH4 emission estimate for rice cultivation was 0.57
to 0.66 mg·m−2·hr−1. Tian et al. (2015) (in Chinese) conducted straw incorporation experiments for rice in
winter and found that the CH4 emissions peaked at 10 mg·m−2·hr−1. Experiments conducted in the U.S.
Corn Belt peaked at 0.55 mg·m−2·hr−1 for tilled soils and 0.21 mg·m−2·hr−1 for no‐till soils (Ussiri et al.,
2009). These emission differences illustrate the large local scale uncertainty related to agricultural manage-
ment practices. Here, we see that field scale agricultural studies indicate that the differences in emissions
among similar agricultural lands can be on the order of 300%.

The uncertainty associated with urban/industrial CH4 emissions is also reported to be relatively large. Peng
et al. (2016) applied localized EFs to calculate CH4 emissions in China and concluded that CH4 emissions
were 18% to 36% lower than the results obtained by using the IPCC default EF method. Also, for low quality
coal, EFs for underground coal mines in China should be lower than that recommended for Europe (Liu
et al., 2015; Peng et al., 2016). Based on on‐road measurements, N. Hu et al. (2018) found that CH4 emissions
from natural gas vehicles were underestimated by 800% in China. This was attributed to IPCC EFs that were
too low. A recent study by Miller et al. (2019) also found that CH4 coal mining emissions based on EDGAR
v432 were large compared to inverse modeling results for China. Large biases were also reported for coal
mining CO2 EFs that were obtained through field experiments in different provinces throughout China.
Here, the EFs varied between 0.74 and 36 m3/t (Zhu et al., 2017). These results indicated that EFs related
to urban/industrial processes can have large uncertainties in different regions and EFs for some regions
and some categories can vary considerably when compared with default EFs recommended by
IPCC method.

Quantifying the spatial and temporal relationships between GHG mixing ratios (emissions) and urban
growth (i.e., land use change, population and economic growth) is essential in developing mitigation
GHG strategies, where long‐term GHG observations are needed. A recent study examined 10 years of
GHGmixing ratios in Salt Lake City, USA, observed a nonlinear relationship between population and emis-
sions. They concluded that there was an increase of emissions with the increase in development of urban
areas. They also found that emissions were relatively stable when urban development was steady
(Mitchell et al., 2018). Here, the YRD is undergoing rapid economic development and population and urban
growth. Therefore, considerably larger GHG emissions are projected in the near future. Comparing CO2

emissions in 2009 and 2012 for YRD indicates that CO2 emissions increased by a staggering 70%. This corre-
sponded with a 56% increase in GDP (Shen et al., 2014; Xu et al., 2017). Clearly, there is an important need to
establish long‐term GHG observation networks within rapidly developing urban regions to improve our
understanding of emissions and to assess if mitigation strategies are effective.
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5. Conclusions

Here, we combined atmospheric observations and three inverse modeling approaches to help constrain and
reduce the uncertainty in anthropogenic CH4 emissions for YRD. Our data and analyses support the
following conclusions:

1. The a posteriori anthropogenic CH4 emissions in YRD area are estimated to be 36.3 (±9.2), 35.7 (±2.9),
and 36.0(±14.3) nmol·m−2·s−1, for theMSF, FR, and SFBI approaches, respectively. These estimates show
high consistency and were 30.8 (±16.9)% lower than EDGAR v432 inventories (52.1 nmol·m−2·s−1). The
annual anthropogenic CH4 emission is estimated at 6.52 (±1.59) Tg for the YRD area using these top‐
down methods.

2. The overestimation of the anthropogenic CH4 emissions by EDGAR v432 was mainly related to a high
bias in fossil fuel exploitation and AGS (rice cultivation). Fossil fuel exploitation and AGS emissions were
overestimated by 41.3% and 91.6%, respectively. AGS was the largest regional source and accounted for
29.6% of the regional CH4 budget.

3. Our analyses indicate that fossil fuel exploitation and AGS emissions in the a priori inventory EDGAR
v432 are poorly estimated with relatively large uncertainties in EFs at the regional and monthly scale.
These findings imply greater need for bottom‐up field experiments at the appropriate spatial scale (i.e.,
field scale) that can be used to help constrain CH4 emissions in these target areas.
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