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Abstract Anthropogenic carbon dioxide (CO2) emissions dominate the atmospheric greenhouse gas
radiative forcing budget. However, these emissions are poorly constrained at the regional (102–106 km2)
and seasonal scales. Here we use a combination of tall tower CO2 mixing ratio and carbon isotope ratio
observations and inverse modeling techniques to constrain anthropogenic CO2 emissions within a highly
heterogeneous agricultural landscape near Saint Paul, Minnesota, in the Upper Midwestern United States.
The analyses indicate that anthropogenic emissions contributed 6.6, 6.8, and 7.4 μmol/mol annual CO2

enhancements (i.e., departures from the background values) in 2008, 2009, and 2010, respectively. Oil
refinery, the energy industry (power and heat generation), and residential emissions (home heating and
cooking) contributed 2.9 (42.5%), 1.4 (19.8%), and 1.1 μmol/mol (15.8%) of the total anthropogenic
enhancement over the 3-year period according to a priori inventories. The total anthropogenic signal was
further partitioned into CO2 emissions derived from fuel oil, natural gas, coal, gasoline, and diesel
consumption using inverse modeling and carbon isotope ratio analyses. The results indicate that fuel oil and
natural gas consumption accounted for 52.5% of the anthropogenic CO2 sources in winter. Here the a
posteriori CO2 emission from natural gas was 79.0 ± 4.1% (a priori 20.0%) and accounted for 63% of the total
CO2 enhancement including both biological and anthropogenic sources. The a posteriori CO2 emission
from fuel oil was 8.4 ± 3.8% (a priori 32.5%)—suggesting a more important role of residential heating in
winter. The modeled carbon isotope ratio of the CO2 source (δ13Cs , �29.3 ± 0.4‰) was relatively more
enriched in 13C-CO2 compared to that derived from Miller-Tans plot analyses (�35.5‰ to �34.8‰),
supporting that natural gas consumption was underestimated for this region.

1. Introduction
Over the past 25 years significant advances have been made in measuring carbon dioxide (CO2) exchange
above natural and managed ecosystems across the globe (Ballantyne et al., 2012; Berthelot et al., 2002;
Friend et al., 2007; Peters et al., 2007). These observations have been critical in assessing feedbacks among
photosynthesis, respiration, and climate, and for determining changes in the terrestrial carbon sink and
source strength (Ballantyne et al., 2012; Berthelot et al., 2002; Gray et al., 2014). The atmospheric CO2 balance
is primarily determined by the very small difference between large gross fluxes of photosynthesis (120 Pg
C/a) and respiration (110 Pg C/a; Kesselmeier et al., 2002) with a disequilibrium of about 10 Pg C/a, that is,
more-or-less in balance at longer time scales. Current estimates indicate a residual terrestrial sink of about
2–3 Pg C/a, which is comparable to the oceanic CO2 sink strength (2.3 ± 0.7 Pg C/a; Intergovernmental
Panel on Climate Change (IPCC), 2013; Quéré et al., 2016; Rotach et al., 2013). Anthropogenic CO2 emissions
(9.8 Pg C/a for 2015), therefore, represent the main contribution to the increasing atmospheric CO2 burden
and the increase in greenhouse gas radiative forcing (Boden et al., 2013; Peters et al., 2007).
Anthropogenic CO2 emissions dominate the atmospheric greenhouse gas radiative forcing budget, but these
emissions are poorly constrained at regional to subregional (102–106 km2), and seasonal scales (Lauvaux et al.,
2016; Newman et al., 2013; Turner et al., 2016).

Previous research has applied “bottom-up” and “top-down” methods to quantify anthropogenic CO2

emissions (Gurney et al., 2017; Brioude et al., 2013; Peters et al., 2007; Turner et al., 2016). The IPCC uses a
bottom-up methodology to estimate fossil fuel CO2 emissions at different scales using activity data and
emission factors derived from the synthesis of field observations and modeling studies. The emission
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factors have been shown to vary spatially even for the same source types, and the use of one single emission
factor has been shown to cause large biases in emission inventories for some regions (i.e., emission factors are
much higher than IPCC default values based on measurements from the 100 largest coal mining regions in
China; Liu et al., 2015) and contain large uncertainties (Rypdal & Winiwarter, 2001; Zhao et al., 2011, 2012).
Further, it is challenging to quantify the activity data for all source types at finer spatial scales
(i.e., urban or city scales). The uncertainties in the activity data and emission factors have been shown to
be 10–40% at the country scale and over 150% at finer spatial scales (Peylin et al., 2013; Wang et al.,
2013). It is well established that the uncertainty increases at finer spatial and temporal resolutions
(Marland, 2008; Shiga et al., 2014). Given these relatively large uncertainties, there is a need for
atmospheric-based measurements to help constrain the problem. Unfortunately, CO2 concentration and flux
measurements within urban environments remain relatively rare (Bréon et al., 2015; Lauvaux et al., 2016;
Menzer & Mcfadden, 2017).

Eddy covariance flux measurements have also been used as a “bottom-up” approach to assess the net
ecosystem CO2 exchange of urban landscapes (Crawford et al., 2011; Diem et al., 2006; Menzer &
Mcfadden, 2017; Song & Wang, 2012; Velasco et al., 2005; Ward et al., 2015). This approach represents the
net exchange of natural and anthropogenic fluxes (Liu et al., 2012; Nemitz et al., 2002). Such measurements
have been used to help constrain anthropogenic emissions, but relatively large uncertainties exist when scal-
ing them up, because of their relatively small source footprint (10–100 times the measurement height) and
the inherent heterogeneity of urban landscapes.

Top-downmethodologies use atmospheric measurements of CO2 mixing ratios (and isotope ratios) observed
from rooftops, tall/short towers, aircraft, or satellite observations to help constrain the surface emissions
(Berezin et al., 2013; Lauvaux et al., 2016; Suntharalingam et al., 2004; Wang et al., 2013; Worden et al.,
2012). The scaling ratio (or enhancement factor) methodology has been widely used to constrain CO2

emissions at regional scales (Vardag et al., 2015; Wang et al., 2013). This approach uses a source tracer to
isolate the anthropogenic CO2 contribution and assumes the following: (1) that the tracer is transported simi-
larly andwell mixedwith anthropogenic CO2 during transport and (2) the flux ratio of these two tracers is con-
stant and equal to their concentration enhancement ratio. Berezin et al. (2013) derived multiannual CO2

emissions based on satellite observed NO2 columns and compared it with “bottom-up” Emission Database
for Global Atmospheric Research, version 4.2 (EDGAR4.2) inventories. The results showed similar trends for
both products. Wang et al. 2010 compared dCO2:dCO (i.e., the concentration enhancement above back-
ground values) with emission ratios at a downwind site near Beijing, China, and found its value was 25%
higher than the emission ratio. They attributed this enhancement to urban CO2 emissions. Recently, Vardag
et al. (2015) compared modeled CO2 concentrations with retrieved results by using three different tracers
(i.e., CO, δ13C-CO2, and Δ14C(CO2)) and concluded that the method performed well at an urban site where
the anthropogenic CO2 signal was relatively strong but performed poorly for rural locations.

Stable carbon isotope techniques were originally used to determine regional CO2 sources using the Keeling
plot (mixing line) method. Early work was based on air samples collected in flasks and analyzed using isotope
ratio mass spectrometers (Bowling et al., 2008; Keeling, 1958, 1961). Keeling’s early work showed that the
increase of CO2 concentration and relative depletion of the δ13C-CO2 were mainly caused by anthropogenic
CO2 emissions (Keeling, 1960). With the development of optical isotope ratio infrared spectroscopy, in situ
and high-frequency carbon isotope measurements have allowed wide application in tracing and partitioning
CO2 fluxes (Griffis, 2013; Xu et al., 2017). Stable carbon isotope techniques have been used to constrain the
relative contribution of different CO2 sources within urban airsheds (Newman et al., 2013, 2015; Pang et al.,
2016; Pataki et al., 2006; Xu et al., 2017). A recent study conducted in Nanjing, China, found that CO2 emis-
sions from cement production were significantly underestimated compared with the a priori estimate in
bottom-up inventories (Xu et al., 2017). However, as of 2017, only 11 urban sites have established long-term
(>30 days) high-frequency stable carbon isotope measurements (Newman et al., 2015; Pang et al., 2016) to
help constrain anthropogenic CO2 emissions.

Atmospheric inversion techniques combine atmospheric transport models and CO2 mixing ratio observa-
tions to constrain surface emissions (Brioude et al., 2013; Pillai et al., 2016; Turnbull et al., 2015). These tech-
niques have been applied to large cities such as Paris, France (Bréon et al., 2015), Berlin, Germany (Pillai et al.,
2016), the California Bay Area and Los Angeles, United States (Brioude et al., 2013; Turner et al., 2016), and
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Indianapolis, United States (Lauvaux et al., 2016; Turnbull et al., 2015). These studies have demonstrated sig-
nificant progress in constraining the high spatial and temporal variation of CO2 emissions and evaluating
related CO2 mitigation strategies. These methods have also been used to constrain net ecosystem CO2

exchange in highly heterogeneous terrain at the continent scale, with anthropogenic emissions prescribed
as “true” values (Gurney et al., 2002; Ogle et al., 2015; Peters et al., 2007).

To the best of our knowledge, there have been very few attempts to quantify the anthropogenic emissions
within the Upper Midwest, United States, using atmospheric observations. There has been a significant effort
to constrain anthropogenic emissions for the dense urban center of Indianapolis, Indiana, as part of the
Indianapolis Flux Experiment (Gurney et al., 2017; Lauvaux et al., 2016). In these studies state-of-the-art emis-
sion inventories such as the Hestia-Indianapolis Version 3.0 were combined with Bayesian inversion methods
(Gurney et al., 2017). Gurney et al. (2017) demonstrated very good agreement (within the statistical uncer-
tainty) between this bottom-up inventory and the top-down inversion but only after accounting for the
importance of ecosystem respiration during the nongrowing season for the period September 2012 to
April 2013. Their inventory emissions indicate that vehicle and electricity production dominated (70%) the
anthropogenic CO2 budget. Menzer and McFadden (2017) used the eddy covariance approach to measure
net CO2 fluxes within a residential and park neighborhood in the Saint-Paul-Minneapolis Metropolitan area
in Minnesota. They used statistical modeling to partition the net CO2 exchange into gross fluxes including
anthropogenic emissions from fossil fuel burning. They estimated that anthropogenic emissions were domi-
nated (857 to 952 g C/(m2· year)) by natural gas consumption associated with space heating over the period
2007 to 2008. CO2 emissions associated with vehicle traffic were also relatively large, ranging from 496 to
509 g C/(m2· year). It is not clear to what extent these observational studies are representative of
Minnesota, Indiana, or the Upper Midwestern, United States.

Here we apply a combination of the above approaches at a very tall tower located near the Minneapolis-Saint
Paul metropolitan area in the Upper Midwestern United States. We combine high-resolution concentration
footprints with high spatial and temporal anthropogenic CO2 flux estimates to simulate year-round CO2 mix-
ing ratios and its source components. Further, stable carbon isotope ratios (δ13C-CO2), measured at high fre-
quency (seconds to minutes) using tunable diode laser spectroscopy, were used to further inform the
atmospheric inversion mainly in the Saint Paul metropolitan area for the year 2008. The objectives of this
research were to (1) quantify the extent to which urban anthropogenic emissions contribute to the tall tower
CO2 mixing ratio enhancements, (2) investigate the potential uncertainty in CO2 concentration modeling for
this heterogeneous (agricultural to urban) landscape, and (3) constrain anthropogenic CO2 emissions for dif-
ferent source categories by including high-density δ13C-CO2 information.

2. Materials and Methodology
2.1. Research Site

The tall tower CO2 observations reported in this study were measured at the University of Minnesota
Rosemount Research and Outreach Center located approximately 25 km south of Minneapolis-Saint Paul,
MN, United States (Figure 1). This area is in the northern domain of the U.S. Midwest/Corn Belt, where approxi-
mately 46% of the land use is agriculture (Griffis et al., 2013; Zhang et al., 2014). The tower is located on the
urban/rural interface, with the Minneapolis-Saint Paul metropolitan area immediately to the north and north-
west, and agricultural land extending in all other directions. While there are broad trends in wind direction on
a seasonal basis, winds can occur from any direction throughout the year, offering the opportunity to observe
seasonal patterns in CO2 mixing ratios that contain both anthropogenic and terrestrial biosphere CO2 signals.

2.2. CO2 Concentration, Stable Isotope, and Eddy Covariance Measurements

CO2 mixing ratios have been measured at the tall tower from April 2007 to February 2018. Air is pulled con-
tinuously from four sample inlets (Synflex tubes, ID: 6.25 mm and with a flow rate of 16 L/min) located at 32,
56, 100, and 185 m above the ground using a large diaphragm pump (1023-101Q-SG608X, GAST
Manufacturing Inc., Benton Harbor, Michigan, United States). From 2007 to 2009 the sample air was dried
and subsampled at 3 Standard Liters Per Minute (SLPM) prior to analysis using a tunable diode laser spectro-
meter (TGA100A, Campbell Scientific Inc., Logan, Utah, United States), which measured the mixing ratios of
three isotopologues including 12CO2,

13CO2, and C18O16O (Griffis et al., 2010). The air samples of the four
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inlets were measured sequentially every 15 s. An omit time of 5 s was used in our data processing to eliminate
any residual air from the previously selected sample line. The CO2 measurements were calibrated every
12 min with standards traceable to the National Oceanic and Atmospheric Administration, Earth System
Research Laboratory. Half-hourly precisions of 12CO2,

13CO2, and δ13C were ±0.03 μmol/mol, 0.0002 μmol/mol,
and 0.07‰, respectively (Griffis et al., 2007, 2010). Eddy covariance systems were installed at the 100-
and 185-m levels using sonic anemometer-thermometers (CSAT3, Campbell Scientific, Inc.) with air
subsampled to an infrared gas analyzer (LI-7000, Licor Inc., Lincoln, Nebraska, United States). Net ecosystem
CO2 exchange (NEE) was calculated as the sum of the eddy flux and change in CO2 storage. The net CO2 flux
was obtained using 60-min block averaging, and the changes in storage were calculated using the CO2

mixing ratio profiles following Griffis et al. (2010) and Zhang et al. (2014).

2.3. Weather Research and Forecasting Model (WRF)-STILT Model Setup

The Stochastic Time-Inverted Lagrangian Transport model (hereafter the STILT model) is based on the hysplit
model, and it helps to define how an observation is influenced by the upwind scalar flux (i.e., the source
footprint influence) of the measurement site (Lin et al., 2003). Here the footprint function is calculated by
the integration of released particle numbers and their residence time in the planetary boundary layer

Figure 1. Maps of (a) three domains setup in North America centered in KCMP tall tower and (b) land use categories around
tall tower and observation site.
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(PBL). Since in the near field, the upstream influence is stronger with
decreasing distance from the receptor (Gerbig et al., 2003), accurate
transport simulation is especially important within the inner domain of
the WRF setup. In this study, three nested domains and a two-way
feedback option were applied, with spatial resolution of 27, 9, and 3 km,
respectively (Figure 1a). The PBL and microphysical options used in WRF
are the same as that described in Chen et al. 2016 and are summarized
briefly in Table 1. The previous simulation of PBL height showed good
agreement with observations at the tall tower site (Chen et al., 2016; Fu
et al., 2017). Fu et al. (2017) reported the root mean square error (RMSE)
of the PBL height simulation to be 199, 270, and 274 m for the same
domain in summer, fall, and winter, respectively. Lin et al. (2003) and
Gerbig et al. (2003) were the first to apply this innovative receptor-oriented

STILT model for CO2 observations. It has since been used for many other trace gases including CH4 (Fournaise
& Chaurand, 2015; Jeong et al., 2013, 2016; Zhao et al., 2009), N2O (Chen et al., 2016; Griffis et al., 2017; Jeong
et al., 2012; Xiang et al., 2013), and CO (Bagley et al., 2017; Hooghiemstra et al., 2011; Kim et al., 2013). Here we
aim to constrain the regional CO2 budget with our independent observations and also evaluate the footprint
representation by modeling the tall tower hourly CO2 mixing ratios for the year 2008. Next we simulate the
concentration footprint for 3 years (2008 to 2010) and analyze the diurnal, seasonal, and
interannual variations.

2.4. Modeled CO2 Mixing Ratios and Prior Fluxes

Our study domain mainly contains the U.S. Corn Belt in the Upper Midwestern United States and includes the
greater Minneapolis-Saint Paul metropolitan area to the north. The land surface characteristics of the domain
are highly heterogeneous and include natural and managed vegetation and anthropogenic CO2 sources
(Griffis et al., 2010). A number of prior CO2 flux products have been evaluated (Gurney et al., 2009; Peters
et al., 2007; Peylin et al., 2013), ranging from IPCC inventories, biophysical models, and inverse products.
We used prior flux information from Carbon Tracker (Peters et al., 2007), EDGAR42 (European Commission,
2011), and VULCAN (Gurney et al., 2009). For the anthropogenic CO2 flux, each product has its strengths
and weaknesses (as discussed below). We used high spatial (0.1° × 0.1°) and temporal (hourly) anthropogenic
emissions that were derived based on these three products. The inverse strategy consisted of four main steps:
(1) CO2 enhancements were modeled using a prior fluxes that included source categories from the above
inventory products; (2) stable carbon isotope (δ13C-CO2) end members were specified for different fuel
categories (i.e., natural gas, coal, and diesel) and were used to derive a modeled source value (δ13CMs );
(3) the carbon isotope ratio of wintertime NEE (δ13Cs ) was obtained using the tall tower observations and
the Miller-Tans mixing model approach (Miller & Tans, 2003); and (4) based on the difference between
the modeled (δ13CMs ) and observed (δ13Cs ) values, a Monte Carlo simulation was used to repartition the
relative proportion of each fuel category.
2.4.1. Simulation of CO2 Mixing Ratios
The CO2 mixing ratio (CO2,m) can be modeled as the sum of the initial background (CO2,bg) and the
enhancement from upstream sources and sinks (S(x,t)). Here we estimated the background CO2 mixing ratio
by tracing the airflow using back trajectory analyses. Each hour, we released 500 particles from the receptor
(tall tower 100-m level) and tracked these particles backward in time for 7 days and identified their locations
in 3D following the methods of Karion et al. (2015) and Chen et al. (2016). Intercomparison of two Global 3-D
background concentration data sets and comparisons with the global background CO2 network
observations demonstrated that these products have relatively high accuracy (Peters et al., 2007;
Pillai et al., 2012). Both products (Carbon Tracker and Jana inversion) are generated from the TM5 transport
model with optimized CO2 fluxes (Peters et al., 2007; Pillai et al., 2012). Considering the relatively high spa-
tiotemporal resolutions of Carbon Tracker (1° by 1°, and 3-hourly for North America), we used the Carbon
Tracker 3-D CO2 background data product in our study. Themodeled CO2 mixing ratio (CO2,m) was calculated
as follows:

CO2;m ¼ CO2;bg þ ΔCO2;comb þ ΔCO2;NEE (1)

ΔCO2;comb ¼ ΔCO2;ff þ ΔCO2;bb (2)

Table 1
WRF3.5 Model Configuration

Basic equations Nonhydro model

Microphysics WSM 3-Class
Longwave
radiation

Rapid Radiative Transfer Model

Shortwave
radiation

Dudhia Scheme

Surface layer Monin-Obukhov Similarity Scheme
Land surface Noah Land Surface Model
Boundary layer YSU Scheme
Cumulus Kain-Fritsch (New Eta) Scheme (Domain1 and

Domain2)
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where CO2 with the subscripts NEE and comb indicate CO2 enhancement from net ecosystem exchange and
combustion. Here combustion contains fossil-fuel burning (ff) and biomass burning (bb).

To avoid “aggregation” errors (i.e., the errors caused by aggregating heterogeneous fluxes in a grid cell into a
single average flux) in the modeled CO2 mixing ratio (Kaminski et al., 2001; Turner & Jacob, 2015; Zhao et al.,
2009), high spatial (0.1° by 0.1°) and temporal (hourly) resolution footprint modeling was performed using the
WRF-STILT model. The source footprint functions were then multiplied by different spatial and temporal prior
flux to obtain the CO2 enhancement contributions from different sources/sinks (i.e., fossil fuel, natural gas,
and croplands). The details of the prior flux estimates are described in section 3.1. Here the CO2 enhancement
was calculated as (Gerbig et al., 2003; Newman et al., 2013; Pillai et al., 2012):

ΔCO2;m ¼
Xn
i¼1

footi�S x; tð Þi
� �

(3)

where ΔCO2, m is the modeled hourly CO2 enhancement from the respective sources (anthropogenic and
biogenic fluxes). Hourly ΔCO2, m is the accumulated CO2 enhancement occurring over the 7-day back trajec-
tory (i.e., following the released particles backward in time [n = 168 hr]), i is the respective hour over the 7-day
trajectory from 1 to 168; foot represents the footprint function, and S(x,t) is the corresponding flux. For exam-
ple, the concentration at the receptor is given by the source footprint function (units: ppmm2 · s/μmol) multi-
plied by the surface fluxes (μmol/(m2 · s)) and then adding the background concentration.
2.4.2. Anthropogenic CO2 Fluxes
High spatial (0.1° by 0.1°) and temporal (hourly) anthropogenic CO2 emissions were derived from three data
sets (EDGAR42, Carbon Tracker, and VULCAN) and are summarized in Table 2. EDGAR42 provides 13 different
categories of anthropogenic combustion and has high spatial resolution (Figure 3a) and good distribution
(0.1° by 0.1°) from 1970 to 2010 (Saito et al., 2012). However, it does not account for the diurnal or seasonal
variation of fossil fuel burning emissions. The VULCAN data set has high spatial resolution (0.1° by 0.1°) and
temporal resolution (hourly) but is only available for the year 2002 (Gurney et al., 2009). Previous studies con-
ducted for Salt Lake City, Utah, United States found that the derived CO2 mixing ratio was biased low, which
was attributed to the underestimation of the VULCAN anthropogenic CO2 flux or an overestimation of mixing
in the model transport (McKain et al., 2012; Nehrkorn et al., 2013). Since VULCAN is limited to the year 2002,
previous studies have interpolated to the required target year (Mathias et al., 2010; Nassar et al., 2013), which
ignores the potential change in spatial distributions and can lead to large uncertainties at the local scale. The
anthropogenic emissions specified in Carbon Tracker represent products from both “Miller” (Boden et al.,
2013) and “ODIACT” (Oda &Maksyutov, 2011), with a spatial resolution of 1° × 1° and with emissions specified
on a monthly basis. Therefore, to utilize the above three data sets, we derived time of day scaling factors in
VULCAN and monthly scaling factors in Carbon Tracker (Figure 2). The seasonal variation of these scaling fac-
tors accounted for how fuel combustion temporal patterns were influenced by human activities. Then we
applied these to EDGAR to get both high spatial (0.1° by 0.1°) and temporal (hourly) anthropogenic emissions
following Mallia et al. (2015) and Nassar et al. (2013).

Carbon Tracker also provides monthly fossil fuel burning CO2 flux at the 1° by 1° spatial resolution. We com-
pared the differences between EDGAR and Carbon Tracker anthropogenic CO2 emissions and found that
within the target area with radius increasing from 4° to 20°, centered on the tall tower, the difference of its
average flux decreased from 5.9% to 1.8% for the annual average. However, its application to our study
domain is not ideal given the strong spatial heterogeneity of anthropogenic emissions. For example, the
EDGAR fossil fuel prior emissions map shows that emissions can vary up to 1,000 times in neighboring grid
cells such that the average of fine spatiotemporal scales (0.1°) to coarse scales (1°) can result in large

Table 2
Description of Three Different Anthropogenic CO2 Emissions

Data sets
Spatial
resolution

Temporal
resolution

Representative
years

Carbon Tracker (Peters et al., 2007) 1° × 1° Monthly 1970–2010
Emission Database for Global Atmospheric Research,
version 4.2

0.1° × 0.1° Yearly 2000–2010

VULCAN (Gurney et al., 2009) 0.1° × 0.1° Hourly ~2002
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spatial and temporal aggregation errors (Kaminski et al., 2001; Turner &
Jacob, 2015). To quantify the extent of aggregation errors, we aggregated
the EDGAR CO2 emissions to 1° by 1°, and the modeled CO2 enhancement
was only 0.4 times that of using a 0.1° spatial resolution. The effects of
these aggregation errors on the inverse analyses are described in greater
detail in section 3.1.
2.4.3. Biogenic Flux
The terrestrial biosphere prior flux was provided by Carbon Tracker assim-
ilation systems (Peters et al., 2007). The biospheric CO2 flux from Carbon
Tracker is an optimized product (1° × 1°, Figure 3b). It is derived from the
a priori information of modeled NEE using the Carnegie-Ames-Stanford
approach and satellite-observed Normalized Difference Vegetation Index
(NDVI) as a first guess and then was optimized by atmospheric CO2 mea-
surements. However, it should be noted that the current optimization pro-
cess assumed the fossil fuel emission uncertainty to be zero. Therefore, its
true uncertainty may be distributed into the biospheric flux (Gurney et al.,
2002; Nassar et al., 2013; Peters et al., 2007). Finally, the prior CO2 fluxes
from biomass burning and oceans (Figures 3c and 3d) were also from
Carbon Tracker (Peters et al., 2007). We note that although oceans contri-
bute to overall tall tower source footprint (Figure 1a), the contribution to
the calculated enhancement is typically less than 0.02 ppm and can, there-
fore, be ignored.

2.5. Carbon Isotope Ratio Partitioning Method
2.5.1. Partitioning Process
Here we derived the observed carbon isotope ratio of the source (δs) and
then compared it with the modeled value (δ13CMs) as determined from the
a priori emissions. Based on the carbon isotope ratio mass conservation
equation, we examined the posteriori values for each source (i.e., respira-
tion, natural gas, diesel, fuel oil, gasoline, and coal) as

Xn
i¼1

δi�ei ¼ δs (4)

where δi is the carbon isotope ratio for each source category and ei is the posteriori proportion of the CO2

mixing ratio enhancement for each source type. By giving random uncertainty in δ13C end members and sol-
ving the mass conservation equation in equation (4), we used a Monte Carlo simulation to investigate how
the uncertainty of the δ13C end members for each fuel category could impact our partitioning results
(Brown et al., 2012; Shen et al., 2014). Here we applied a uniform probability distribution, using 10,000 itera-
tions, to assign uncertainty of δ13C in all categories. Note that 2.5% and 97.5% probability values are consid-
ered the lower and upper bounds for the retrieved posteriori proportion of each source category.
2.5.2. Miller-Tans Plot Approach
We applied a simple carbon isotope ratio mixing model to characterize the source contribution of the anthro-
pogenic CO2 emissions. The δs was obtained by applying the Miller-Tans method (equation (5)) to the tall
tower CO2 mixing ratio and carbon isotope ratio data. Here the Miller-Tans method is used because it has
proved to be more robust when the background atmospheric CO2 values are varying with time (Miller &
Tans, 2003),

δaCa ¼ δS Ca � Cbð Þ þ δbCb (5)

where δwith the subscripts of a, b, and s indicate the 13C isotope signals of total, background, and additional
CO2 contributions by all the sources and sinks. The Ca is the observed CO2 concentration, and Cb is the back-
ground CO2 concentration. Here δs of the regional sources was derived from the linear regression slope
between δaCa and (Ca � Cb). The Miller-Tans method was performed for daytime (10:00–16:00 LT) and night-
time (22:00–06:00 LT) to assess if atmospheric boundary layer dynamics influenced the carbon isotope ratio
of the enhancements at the receptor site. Although there is still some debate regarding the best regression
type and fitting approach (Zobitz et al., 2006; Kayler et al., 2010), we applied the geometric mean regression

Figure 2. (a) Hourly and (b) monthly scaling factors derived from “VULCAN”
and “Carbon Tracker,” respectively.
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to fit equation (5) to the tall tower data as recommended by Pataki et al. (2003), Kayler et al. (2010), and Pang
et al. (2016). The slope of the Miller-Tans plot was then compared with the modeled value (δ13CMs ) that was
derived from the modeled CO2 enhancements from the different source categories with the best available
knowledge of their corresponding δ13C end members (Pataki et al., 2003).

The inherent isotope ratios in different sources and sinks have been measured and applied worldwide. Based
on a literature review, we used the following δ13C-CO2 values: �39.5 ± 1.1‰ for natural gas, �28.9 ± 0.5‰
for gasoline (Pang et al., 2016; Takahashi et al., 2002; Widory & Javoy, 2003; Widory et al., 2006; ), and
�25.5 ± 0.4‰, �29.8 ± 0.3‰, �29.3 ± 0.2‰ for coal, diesel, and fuel oil, respectively (Widory et al., 2006;
Xu et al., 2017). Considering the requirement for 10% ethanol content for gasoline, we applied an end mem-
ber value of �25.5 ± 0.5‰ for gasoline following recent experiments conducted in Los Angeles (Newman
et al., 2015). Further, to account for the influence of ecosystem respiration, we used an end member value
of �28‰ ± 1.5 ‰ based on nongrowing season observations from within the region (Billmark & Griffis,
2009; Griffis et al., 2004, 2007).

In this study we used the following generalized classifications for δ13C assignment: oil production (refineries)
was classified as fuel oil and residential emissions as natural gas. While CO2 emissions in the road transporta-
tion and energy industry are complex, based on statistics from the U.S. Energy Information Administration,
the proportion combusted by gasoline and diesel is given as 72% and 28%, respectively, for road transporta-
tion in Minnesota (International Energy Agency (IEA) 2015). For the energy industry sector, approximately

Figure 3. Annual average CO2 flux for 2008, (a) anthropogenic fossil fuel emissions, units: log10 (mol/(m2 · s)), (b) net ecosystem exchange and units: 10�7 mol/(m2 · s),
(c) biomass burning emissions, units: 10�7 mol/(m2 · s) and (d) ocean flux, units: 10�7 mol/(m2 · s).
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90% is from power and heat generation (IEA, 2015) and the remainder 10% is from nuclear energy, which is
not considered a CO2 emission category. The proportion of natural gas used in electricity power and heat
industry was 7.5% in 2005 and changed to 13.3% in 2010 for Minnesota. We assumed a linear trend for its
variation over the 5-year period. Further, the emission factor for natural gas (2.7 kgCO2/kg) is very similar
to coal (2.5~2.6; IPCC, 2013), suggesting that 11% of CO2 emissions from the energy industry is from
natural gas combustion and 89% from coal combustion. For the manufacturing industry, according to
statistics for the United States, 60% is from natural gas, 23% from coal, and 17% from oil combustion
(IEA, 2015).

3. Results and Discussion
3.1. Aggregation Error Analysis

To quantify the aggregation error when using different spatial resolutions, we conducted 16 paired tests by
aggregating the 0.1° prior CO2 emissions to multiple spatial resolutions and then simulated the CO2 mixing
ratio enhancement (ΔCO2) for tall tower receptor over the whole year. Here we define the “aggregation ratio”
as the simulated CO2 enhancement ratio between different spatial resolutions versus the standard of 0.1°.
The greater the bias from 1 means larger aggregation error. For the biogenic CO2 flux map (Carbon
Tracker), the domain is more homogeneous, and for this reason we did not have 0.1° biospheric flux; rather,
here we treated soil CO2 flux (from EDGAR42) aggregation error as a surrogate for the biospheric flux. The
results show that the aggregation ratios are almost the same for soil flux (Figure 4), with a relative difference
less than 10%. Here the difference between the 0.1° and 1° grid results is within 2%, so that the aggregation
error when using Carbon Tracker 1° by 1° can be ignored for the biospheric flux. Mallia et al. (2015) also used
this data set in Salt Lake City, where the land type is less homogeneous than our domain. However, the influ-
ence of aggregation error with respect to the anthropogenic emissions is very important. Here the modeled
CO2 mixing ratio enhancement was only 0.4 times that of using 0.1° flux, indicating the necessity of applying
a high spatial resolution emission map. The aggregation error for biomass burning was not considered here
because the monthly average CO2 enhancement from biomass burning was less than 0.06 ppm and was neg-
ligible when compared with anthropogenic CO2 emissions and NEE.

3.2. Variations of Concentration Footprint and Cumulative CO2 Mixing Ratio Enhancement

The cumulative CO2 enhancement from anthropogenic emissions for different seasons was assessed for
December–February (winter), March–May (spring), June–August (summer), and September–November
(autumn) in 2008. As defined by equation (3), the cumulative CO2 mixing ratio enhancement, and its propor-
tional change as a function of time, was analyzed for each period. Figure 5 shows that the CO2 mixing ratio
enhancement was characterized by a logarithmic increase with the variation during the last 12-hr back tra-
jectory accounting for 84.5%, 84.2%, 77.9%, and 80.6% of the total CO2 enhancement relative to the past
7 days for spring, summer, autumn, and winter, respectively.

Figure 4. Aggregation error analyses for biogenic and anthropogenic CO2 flux, the error bar indicates for root mean square
error for 12 months.
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Given a measured annual average wind speed of 6.7 m/s at the tall tower (100-m level), the main source area
(i.e., the area representing the previous 12 hr) that contributed to the CO2 mixing ratio enhancement was
within about 289 km of the tower. Given the seasonal variation of wind speed for spring (7.1 m/s), summer
(5.9 m/s), fall (7.0 m/s), and winter (6.9 m/s), the main source areas were within 307, 255, 302, and 298 km
of the tall tower, respectively. This is consistent with the footprint functions shown in Figure 6, where the
heavy black color illustrates the most intense or sensitive zone. The smallest source area was associated with
summer because of the relatively low wind speed and great atmospheric instability. This intense footprint
zone contains strong anthropogenic CO2 emissions from the Saint Paul-Minneapolis area. Overall, the anthro-
pogenic CO2 mixing ratio enhancement for each period was greater than 5 μmol/mol, and the enhancement
in autumn (8.5 μmol/mol) was larger than in winter (6.8 μmol/mol), summer (6.6 μmol/mol), and spring
(5.3 μmol/mol). These enhancement differences appear to be partly explained by the significantly lower
PBL height and the more stable boundary layer that typically occur in autumn and winter (Ahmadov et al.,
2009; Guha & Ghosh, 2010). Direct PBL height observations were only available for 06:00 and 18:00 (local
time). Based on these observations, we found that the CO2 enhancement in autumn was larger than in winter
because the PBL height at 06:00 was lower (130 m) compared to winter (200 m) for these observations.
Similar PBL height differences were observed by Kim et al. (2013) for the tall tower site. The distinct difference
in daytime and nighttime PBL height can cause much larger CO2 enhancement in nighttime than in daytime.
Thus, given similar anthropogenic emissions in each season, the boundary layer meteorology characteristics
(including PBL dynamics, wind speed, wind direction, and source area) can contribute up to 1.6-fold CO2 mix-
ing ratio enhancement for different seasons.

The footprint function was calculated using high spatial (0.1° × 0.1°) and temporal (hourly) resolution for
2008. The ensemble average spring, summer, autumn, and winter footprint functions are shown in
Figure 6. These results illustrate that the entire North American continent contributes to the KCMP tall tower
CO2 mixing ratio enhancement, with 80% of the contribution coming from a source area with radius of
289 km for CO2. In all four seasons, the prevailing wind direction was from the northwest to southeast, result-
ing in a footprint function that shows relatively strong similarity for each season.

However, there are some key differences among the seasons. For summer and autumn, the source footprint
was influenced by the prevailing wind direction that was from 270° to 360°. During spring, the source foot-
print was influenced by a dominant wind direction from 315° to 45°. The total footprint area was greatest
in winter followed by spring, autumn, and summer, which was mainly caused by differences in atmospheric
stability and turbulence. Here we use color contours to show the variation in sensitivity or weighting function.
Previous work used a threshold of 1e�4 ppmm2 · s/μmol, to define the most sensitive zone (shown as red) for
the investigation of CO, N2O, and CH4 (Kim et al., 2013; Chen et al., 2016, 2018). At our same site, Chen et al.
2018 concluded that about 30% of the CH4 enhancement was contributed by an area defined by a footprint
function threshold of 1e�4 ppm m2 · s/μmol, and most of the U.S. Corn Belt is contained within the most

Figure 5. Accumulated anthropogenic CO2 enhancements with time for four seasons, with accumulated CO2 enhance-
ment on the left and accumulated enhancement percentage on the right.
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sensitive and intense footprint zone and, thereby, included the dominant influence of agricultural crops
(mainly corn and soybean). For the case of CO2, the most sensitive zone is quite different because of the
strongly heterogeneous distribution of anthropogenic CO2 emissions. We further analyzed the averaged
anthropogenic CO2 flux within the source area with footprint >1e�3 and >1e�4 ppm m2 · s/μmol. The
results indicate an emission of 0.048 and 0.018 μmol/(m2 · s), respectively. This highlights the large CO2

emissions from the greater Minneapolis-Saint Paul metropolitan area and its strong influence on the tall
tower observations. As shown in section 3.1 and Figure 5, nearly 80% of the CO2 mixing ratio
enhancement was attributed by the more intense footprint zone within a radius of 289 km (i.e., in close
agreement with the black contour of Figure 6). The source area contained by the red contours accounted
for about 10% of the CO2 enhancement, despite having an area that was about 24 times greater than the
source area contained within the black contours. Therefore, we define the intense source area with
footprint >1e�3 ppm m2 · s/μmol for CO2 in this study. Within this zone the land use consisted mainly of
cropland (~40%), forest (~25%), and grass/pasture (~21%), according to the U.S. Department of Agriculture
land use layer data in 2008. Though urban areas represent a small fraction (<5%) of the intense footprint,
they exert a disproportionately strong anthropogenic effect on the observed tall tower CO2 mixing ratios
and will be examined in greater detail below.

Figure 6. Seasonal average footprints for spring, summer, autumn, and winter (units: ppm m2 · s/μmol, shown in the form of logarithm to base 10).
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3.3. Comparing Modeled Versus Observed CO2 Mixing Ratios

The tall tower CO2 observations show strong diurnal, seasonal, and annual variations influenced by regional
CO2 sinks and sources (i.e., ecosystem respiration and photosynthesis, anthropogenic emissions) and bound-
ary layer stratification. Observed CO2 mixing ratios at different heights show strong annual average diurnal
variations (peak to peak) of 13.8 μmol/mol (32 m) > 11.5 μmol/mol (56 m) > 8.8 μmol/mol
(100 m) > 5.2 μmol/mol (185 m). The differences among these four sample heights reached a maximum at
8:00–9:00 (local time, modeled PBL height at ~250 m for summer), while the differences were less than
0.1 μmol/mol from 13:00–18:00 (modeled PBL height ~1,250 m for summer) due to strong turbulent mixing
through a relatively deep convective boundary layer (Ahmadov et al., 2009; Ballav et al., 2016; Griffis et al.,
2010; Guha & Ghosh, 2010). Because the 100-m sample level includes near continuous CO2 mixing ratio
and carbon isotope (δ13C-CO2) observations, we examine these data in further detail to provide better con-
straints on the anthropogenic CO2 emissions.

Overall, the modeled CO2 mixing ratios (a priori) were in good agreement with the observed seasonal and
diurnal variations (Figure 7a) for 2008, with a RMSE of 10.6 ppm and Pearson correlation coefficient of 0.44
(n = 7784, p < 0.001). When restricting the analysis to the afternoon data (13:00–18:00), the RMSE dropped
to 7.48 ppm and the correlation coefficient increased to 0.8 (n = 2184, p< 0.001). This improvement appears
to be related to well-mixed boundary layer condition, which is better represented by the WRF model com-
pared to the nighttime stable conditions. From January to April 2008, both observed and modeled CO2 mix-
ing ratios were above the background values because CO2 emissions from anthropogenic sources and
ecosystem respiration dominated the boundary layer budget. In May, the CO2 mixing ratios dropped below
the background values as photosynthesis from forests, grassland, and eventually corn and soybean (Chen
et al., 2015; Zhang et al., 2014) dominated the boundary layer budget. The average NEE measured at the tall
tower 100-m level was �0.15 μmol/(m2 · s), supporting the conclusion that the domain switched from a net
carbon source to a net sink in May. During the growing season (June–September) photosynthesis exceeded
ecosystem respiration and the observed average NEE was �1.73, �4.21, �2.93, and �0.73 μmol/(m2 · s) for
June, July, August, and September, respectively. After harvest in September/October, the region transitioned
to being a source, leading to enhanced CO2 mixing ratios that exceeded the background values. The average
NEE was +0.65 μmol/(m2 · s) for this period (October 2008).

Large diurnal variation of the biogenic CO2 flux (Figure 7b) combined with a relatively large amplitude of the
diurnal PBL height variations (i.e., ~220m (6:00–7:00) to 1,280m (14:00–13:00) resulted in pronounced diurnal
variation of the CO2mixing ratios during the growing season. We performed a sensitivity test using anthropo-
genic CO2 emissions with andwithout diurnal variations through the whole year, to assess its influence on the
diurnal CO2 mixing ratio amplitude. Our sensitivity results showed that the annual average diurnal amplitude
changed from 4.3 to 3.4 μmol/mol, indicating that anthropogenic emissions played a minor role compared to
the biogenic CO2 fluxes and PBL height variations.

The analysis of CO2 mixing ratio enhancement, rather than the absolute mixing ratio, can provide greater
insights regarding the influence of source footprint and individual CO2 source contribution. Here we calcu-
lated the observed enhancement by removing the background mixing ratio estimate for the domain
(Figure 7c). The results showed that the modeled enhancements were in good agreement with the observed
enhancements (R = 0.52, p < 0.001), indicating that the source footprint modeling does a reasonably good
job of capturing the spatial and temporal variability. The geometric regression results indicate a slope of
1.08 ± 0.03 and an intercept of 7.26 ± 0.03 μmol/mol. Restricting the analysis to well-mixed daytime condi-
tions yielded a regression with a slope of 0.83 ± 0.06 and an intercept of 2.44 ± 0.35 μmol/mol.

The relatively large regression intercept (7.26 μmol/mol) when using all the data or given the bias in the slope
(0.83) when using the daytime data indicates bias in one or more of the emission categories including anthro-
pogenic or biological CO2 fluxes. Here we note that the biogenic CO2 flux has been previously optimized
based on atmospheric inversion studies that include our study domain. For example, Peters et al. (2007)
reported that the NEE for North America, based on inverse analyses, varied between �0.03 and �0.12 Pg
C/a (average of �0.11 Pg C/a) and showed that the uncertainty and bias at the regional scale were highly
dependent on the temporal and spatial distribution of CO2 observations. Schuh et al. (2013) used CO2 obser-
vations from five tall towers as part of theMidwest Continental Intensive and three different transport models
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(CT: Carbon Tracker; CSU: Sib-RAMS-LPDM; and PSU: WRF-LPDM) to optimize the CO2 sink/source in the
midwestern United States. Their results were compared to bottom-up statistical inventories mainly including
crop yield, forest biomass, and woody production. The model results reproduced the spatial distribution of
the CO2 flux with a slight overestimation of the CO2 sink strength by 8–20%, 10–20%, and 21% for PSU,
CSU and CT, respectively. Ogle et al. (2015) compared the biogenic CO2 inventory flux with that estimated
from the atmospheric inversion results in 2007 for the Mid-Continent region and found that they were not

Figure 7. Comparison between (a) hourly simulated and observed CO2 concentration for the year of 2008, (b) observed net
ecosystem CO2 exchange at the tall tower, (c) simulated and observed CO2 enhancement for growing seasons (June–
September), and (d) comparison of observed and modeled used net ecosystem CO2 exchange around tall tower (June–
September).
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statistically different, with �408 ± 136 Tg CO2 for inventory and �478 ± 136 Tg CO2 for the
atmospheric inversion.

To further evaluate the influence of the biogenic flux on the tall tower CO2 mixing ratio enhancement, we
performed linear regression analyses using our 100-m eddy covariance observations and Carbon Tracker
NEE for the grid cell location that includes the tall tower (Figure 7d). Half-hourly NEE values were averaged
to 3 hr to eliminate random bias, with data between 10:00 a.m. and 15:00 p.m. chosen to represent daytime
and 1:00 a.m. to 6:00 a.m. for nighttime. The regression slopes were 2.26 (R = 0.69, p < 0.001) and 1.56
(R = 0.41, p< 0.001) for daytime and nighttime, respectively. Although there is a mismatch in the source foot-
print function for the tall tower NEE versus the Carbon Tracker NEE (i.e., the eddy covariance footprint varies
from 10 to 100 times the observation height depending on different PBL conditions (Davis et al., 2003; Horst &
Weil, 1992; Zhang et al., 2014)), the land use characteristics are remarkably similar as distance increases away
from the tall tower. Considering the similarity of the underlying surface (Griffis et al., 2010; Zhang et al., 2014),
the results suggest an overestimation of NEE by Carbon Tracker. The uncertainties in anthropogenic emis-
sions for these sources are calculated based on the IPCC inventory method with values of 5–20% at the
national scale and substantially larger (~60%) at regional scales (Ciais et al., 2010; Mallia et al., 2015; Nassar
et al., 2013). In the next section, we add δ13C-CO2 to the inverse modeling approach to help better constrain
the anthropogenic emissions from different sources.

3.4. CO2 Sources and Their Influence on Observed and Modeled Enhancements

Figure 8 shows the monthly growing season CO2 enhancements contributed by biogenic and anthropogenic
CO2 fluxes. Themodeled average diurnal amplitude in the growing season was 24.3 μmol/mol, in close agree-
ment with the observations (20.2 μmol/mol). The biogenic modification caused a maximum reduction of
25 μmol/mol by daytime photosynthesis, while nighttime ecosystem respiration caused a maximum night-
time enhancement of more than 40 μmol/mol. Biomass burning had a very small impact on the CO2 enhance-
ment. The monthly average enhancement was 0.06 μmol/mol, with hourly contributions rarely reaching
1 μmol/mol. The maximum monthly average occurred in June (0.12 μmol/mol), and the minimum was
observed in September (0.001 μmol/mol). These contributions were largely driven by forest fires in central
Canada. The anthropogenic emissions caused significant enhancement that is most clearly evident in the
relatively shallow and stable nocturnal boundary layer. Throughout 2008, emissions from oil production (refi-
neries), energy industry, road transportation, residential emissions, and the manufacturing industry contrib-
uted annual mean enhancement of 2.55, 1.43, 1.11, 0.67, and 0.49 μmol/mol, respectively.

The designations A1–A6 in Figure 8 represent different anthropogenic CO2 categories including oil produc-
tion (refineries), energy industry, residential emission, road transportation, manufacturing industry combus-
tion, and the left anthropogenic categories (i.e., mineral process and solid waste disposal), respectively. Oil
production was the most important anthropogenic CO2 source and accounted for more than 40% of the total
anthropogenic CO2 enhancement in all 4 months of the growing season and varied between 42% and 57%.
This largely reflects the fact that the largest oil refinery in the Upper Midwest United States, processing an
average of 339,000 barrels/day, is located only 8 km NNW of the tall tower. Further, a second large refinery
(98,000 barrels/day) is located 18 km away in the same direction (shown in Figure 1b). The energy industry
ranked second, contributing between 15% and 22%. Surprisingly, residential emissions contributed only
13% to 17% of the total CO2 enhancement, despite the close proximity of the Twin Cities Metropolitan
Area, with a population of 3.6 million. The contribution from residential emissions was much higher during
the winter as a consequence of home heating and will be discussed further in the next section.

To provide an additional constraint on the CO2 source partitioning, we compared the observed tall tower
δ13Cs with δ13CMs . The tall tower Miller-Tans analyses (Figure 9) are shown for the winter months
(December, January, and February) when ecosystem photosynthesis was negligible compared to ecosystems
respiration. The winter season was also selected to minimize the influence of biogenic CO2 fluxes (Pang et al.,
2016). The winter a priori CO2 fluxes contribute an anthropogenic and biogenic CO2 enhancement of 64%
and 36% of the total, respectively, The wintertime isotope mixing line analyses indicate values that ranged
between�34.81‰ and�35.47‰ for daytime (10:00–16:00 LT) and nighttime (22:00–06:00 LT), respectively.
These results are very similar to the findings reported by Pataki et al. (2003) for Salt Lake City, Utah, United
States, which ranged from �37.2 to �30.0‰ in winter. Tanaka et al. (2013) reported δ13Cs values that were

10.1029/2017JD027881Journal of Geophysical Research: Atmospheres

HU ET AL. 4687



Figure 8. Observed and simulated hourly CO2 concentration in June, July, August, and September, the mean components of concentration enhancement for each
month are also shown to the right. Designations A1–A6 represent different anthropogenic CO2 categories including oil production (refineries), energy industry,
residential emission, road transportation, manufacturing industry combustion, and the other anthropogenic categories.
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significantly more depleted (i.e.,�40.1‰) values for Tokyo, Japan. These carbon isotope ratio values are con-
sistent with CO2 emitted from fossil fuel burning.

Based on the a priori emissions, we used the following weighting factors: oil production (refineries; 31%), resi-
dential emissions (12%), energy industry (23%), road transportation (19%), and manufacturing industry (9%)
estimated for the winter. Following the classifications for the fuel categories, as described in section 2.5.2, the
a priori fuel oil, natural gas, coal, diesel, and gasoline accounted for 32.5%, 20.0%, 22.5%, 5.3%, and 13.7%,
respectively, of the total anthropogenic CO2 enhancement. All other anthropogenic sources accounted for
only 6% of the total anthropogenic CO2 enhancement. We attributed these other sources with an average
carbon isotope ratio endmember value of�29.8 ± 0.3‰ (equivalent to diesel). Using these weighting factors
and the literature values for carbon isotope ratios typical for these sources (see section 2.5), the modeled car-
bon isotope ratio was�29.3 ± 0.4‰. The modeled carbon isotope ratio was relatively enriched compared to
the observations. As is noted in section 2.5, δ13C-CO2 values of CO2 emitted from natural gas are substantially
more depleted than �29.3‰. This supports that CO2 emissions from natural gas burning were likely under-
estimated. We now repartition the proportion of each fuel source based on the strategy described below.

First, the biogenic flux was estimated from the wintertime tall tower eddy covariance observations. Themean
observed NEE (ecosystem respiration) was 0.28 μmol/(m2 · s), while the grid cell a priori NEE (Carbon Tracker)
value was 0.42 μmol/(m2 · s). Second, a scaling ratio of 0.67(0.28/0.42) was applied to the a priori NEE values.
Therefore, the posteriori biogenic and anthropogenic CO2 enhancement accounted for 21.4% and 78.6% of
the total CO2 enhancement, respectively. Third, we applied the observed δ13Cs value of �35.1 ± 1.7‰ (aver-
age of daytime and nighttime data) as the true value for the net CO2 source (described in section 2.5.1) to
perform the repartitioning. To solve the partitioning equations (equation (5)), only one unknown (x) was
allowed and we set it as the posteriori proportion of natural gas. Here we assume that the posteriori values
for other sources (i.e., coal, diesel, and gasoline) are in the same proportion of their a priori values and recal-
culate the partitioning based on the carbon isotope mass conservation equation:

0:21� �28:0‰ð Þ þ 0:79

�
�

�39:5‰ð Þx þ 1� xð Þ 0:32
0:8

�29:3‰ð Þ þ 0:23
0:8

�25:5‰ð Þ þ 0:14
0:8

�25:5‰ð Þ þ 0:11
0:8

�29:8‰ð Þ
� �� �

¼ �35:1‰

(5)

Further, we applied the Monte Carlo method to investigate how the uncertainty of δ13C in each of the sources
can impact our partitioning conclusions as applied to equation (5) above. The resolved posteriori values for
natural gas was x = 79.0 ± 4.1%; it accounted for 62.8% of total CO2 enhancement including both biological
respiration and anthropogenic CO2 emissions.

Figure 9. Results of monthly mixing line analyses based on theMiller-Tans approach in winter, the uncertainty range repre-
sents the 95% confidence interval.
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These analyses provide strong support that natural gas was substantially underestimated and that the poster-
iori value is constrained to be approximately 63%. We conclude that the sum of CO2 emitted from natural gas
should increase from the a priori value of 20.0% to 79.0 ± 4.1% and that the emission of CO2 from fuel oil be
reduced from 32.5% to 8.4 ± 3.8% of total anthropogenic CO2 enhancement in winter. This partitioning is
supported by the fact that more than 66% of homes in Minnesota are heated by natural gas, 17.9% higher
than the whole country of Unites States (U.S. Energy Information Administration). The predominance of fuel
sources have been shown to vary substantial worldwide depending on different local energy structure. Lopez
et al. (2013) conducted a pilot study in Paris, French, and found that natural gas accounted for 70% of the
total fossil fuel use in the winter. Further, more than 50% of natural gas combustion attributed to atmospheric
CO2 (including biological contributions) in wintertime was reported in Salt Lake City (Pataki et al., 2007); Wada
et al. (2011) reported that natural gas combustion and biogenic respiration contributed 60% and 11% of the
total enhancement in the winter for Nagoya, Japan, and is in excellent agreement with our results. In Beijing,
China, coal accounts for >80% of the CO2 enhancement in winter (Pang et al., 2016). Djuricin et al. (2010)
found that the use of natural gas accounted for about 30% to 50% of total fossil in October through
December, in Los Angeles, United States.

3.5. Sensitivity of CO2 Enhancement to the Source Footprint Climatology

Here we examine the extent to which the above findings are sensitive to the source footprint climatology and
extend our analyses from 2009 to 2010. In these analyses the anthropogenic emissions map was static for the
3 years in order to assess the influence of varying source footprint. The results show that the annual average
CO2 enhancement was 6.62, 6.83, and 7.43 μmol/mol for 2008 to 2010, respectively, indicating relatively small
variations among these years.

Previous studies have addressed this sensitivity question by examining the concentration source footprint for
nighttime versus daytime, with source area size of about 100 km (a city scale) and more than 1,000 km (a
regional scale), respectively (Gloor et al., 2001; Shen et al., 2014; Wunch et al., 2009). Here we averaged the
WRF-STILT source footprint according to midday (10:00–16:00 LST) and midnight (23:00–5:00) for compari-
son. As displayed in Table 3, the source area in daytime and nighttime showed no obvious change among
the 3 years. Using a much stronger footprint sensitivity criterion of�3 (i.e., where 80% of the CO2 concentra-
tion enhancement originates), the areas for the 3 years varied between 294 to 310 × 102 km2 in the daytime
and 483.3 to 528.3 × 102 km2 in the nighttime, and when choosing criterion of�4 (where around 90% of the
CO2 concentration enhancement originates), little variations were observed, indicating only small footprint
source area variations for these 3 years.

4. Conclusions

We combined the WRF-STILT model with high spatial and temporal CO2 flux information to simulate 3 years
of tall tower CO2 mixing ratios within a transition zone of agricultural to urban land use. Tall tower CO2mixing
ratios and carbon isotope ratios were used to help constrain the anthropogenic CO2 emissions. Our findings
indicate that

1. The anthropogenic CO2 emissions contribute to a tall tower CO2 enhancement of 6.6, 6.8, and
7.4 μmol/mol, for 2008 to 2010, respectively. These findings show relatively low sensitivity to the
overall source footprint climatology at the annual time scale. However, at finer time scales, careful

Table 3
Source Footprint Area in Different Criteria (Unit: 100 × km2)

Year Period lg(F) > �1 > �1.5 > �2 > �2.5 > �3 > �3.5 > �4

2008 Midday 0 0.9 6.3 46.8 294.3 1,989 10,584
Midnight 0 3.6 22.5 114.3 483.3 2,075.4 9,650

2009 Midday 0 0.9 7.2 49.5 300.6 2,187 11,488
Midnight 0.9 3.6 23.4 117 493.2 2,142 10,048

2010 Midday 0 0.9 7.2 51.3 310.5 2,082.6 10,071
Midnight 0 3.6 19.8 118 528.3 2,239.2 11,135
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attention must be paid to the potential influence of aggregation errors on the anthropogenic
emissions.

2. The combination of carbon isotope observations and inverse modeling indicates that CO2 emissions from
natural gas are underestimated for this region during the winter. The posteriori CO2 emission from natural
gas was 79.0 ± 4.1% (a priori 20.0%), while the posteriori CO2 emission from fuel oil was 8.4 ± 3.8% (a priori
32.5%)—suggesting a more important role of residential heating than previously estimated.

3. The uncertainty in the anthropogenic source may be greater than biogenic because of more heteroge-
neous distribution and emission uncertainty at the regional scale.
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Erratum

In the originally published version of this article, several instances of text were incorrectly typeset. The
following have since been corrected, and this version may be considered the authoritative version of record.

The ‘2’ in ‘m2,’ was changed to a superscript to represent square meters throughout the body, and the
captions for Figures 3 and 6. Y. Zhao et al., 2011, 2012 was changed to Zhao et al., 2011, 2012. R. Wang
et al., 2013 was changed to Wang et al., 2013. Y. Wang et al. (2010) was changed to Wang et al. 2010.
Z. Chen et al. (2016) was changed to Chen et al. 2016. C. Zhao et al., 2009 was changed to Zhao et al.,
2009. Z. Chen et al. (2018) was changed to Chen et al. 2018. M. Chen et al., 2015 was changed to Chen
et al., 2015.
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